Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949677948> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2949677948 abstract "Let S=(s_1,s_2,..., s_m) and T = (t_1,t_2,..., t_n) be vectors of non-negative integers with sum_{i=1}^{m} s_i = sum_{j=1}^n t_j. Let B(S,T) be the number of m*n matrices over {0,1} with j-th row sum equal to s_j for 1 <= j <= m and k-th column sum equal to t_k for 1 <= k <= n. Equivalently, B(S,T) is the number of bipartite graphs with m vertices in one part with degrees given by S, and n vertices in the other part with degrees given by T. Most research on the asymptotics of B(S,T) has focused on the sparse case, where the best result is that of Greenhill, McKay and Wang (2006). In the case of dense matrices, the only precise result is for the case of equal row sums and equal column sums (Canfield and McKay, 2005). This paper extends the analytic methods used by the latter paper to the case where the row and column sums can vary within certain limits. Interestingly, the result can be expressed by the same formula which holds in the sparse case." @default.
- W2949677948 created "2019-06-27" @default.
- W2949677948 creator A5014961672 @default.
- W2949677948 creator A5031194096 @default.
- W2949677948 creator A5071772779 @default.
- W2949677948 date "2006-06-20" @default.
- W2949677948 modified "2023-09-27" @default.
- W2949677948 title "Asymptotic enumeration of dense 0-1 matrices with specified line sums" @default.
- W2949677948 cites W1960402810 @default.
- W2949677948 cites W1991825372 @default.
- W2949677948 cites W1998108307 @default.
- W2949677948 cites W2007774136 @default.
- W2949677948 cites W2103012681 @default.
- W2949677948 cites W2111550877 @default.
- W2949677948 cites W2121163052 @default.
- W2949677948 cites W2142440738 @default.
- W2949677948 hasPublicationYear "2006" @default.
- W2949677948 type Work @default.
- W2949677948 sameAs 2949677948 @default.
- W2949677948 citedByCount "0" @default.
- W2949677948 crossrefType "posted-content" @default.
- W2949677948 hasAuthorship W2949677948A5014961672 @default.
- W2949677948 hasAuthorship W2949677948A5031194096 @default.
- W2949677948 hasAuthorship W2949677948A5071772779 @default.
- W2949677948 hasConcept C114614502 @default.
- W2949677948 hasConcept C118615104 @default.
- W2949677948 hasConcept C132525143 @default.
- W2949677948 hasConcept C13355873 @default.
- W2949677948 hasConcept C156340839 @default.
- W2949677948 hasConcept C197657726 @default.
- W2949677948 hasConcept C2524010 @default.
- W2949677948 hasConcept C2780551164 @default.
- W2949677948 hasConcept C33923547 @default.
- W2949677948 hasConceptScore W2949677948C114614502 @default.
- W2949677948 hasConceptScore W2949677948C118615104 @default.
- W2949677948 hasConceptScore W2949677948C132525143 @default.
- W2949677948 hasConceptScore W2949677948C13355873 @default.
- W2949677948 hasConceptScore W2949677948C156340839 @default.
- W2949677948 hasConceptScore W2949677948C197657726 @default.
- W2949677948 hasConceptScore W2949677948C2524010 @default.
- W2949677948 hasConceptScore W2949677948C2780551164 @default.
- W2949677948 hasConceptScore W2949677948C33923547 @default.
- W2949677948 hasLocation W29496779481 @default.
- W2949677948 hasOpenAccess W2949677948 @default.
- W2949677948 hasPrimaryLocation W29496779481 @default.
- W2949677948 hasRelatedWork W1530647546 @default.
- W2949677948 hasRelatedWork W1590248699 @default.
- W2949677948 hasRelatedWork W1614037783 @default.
- W2949677948 hasRelatedWork W1968244010 @default.
- W2949677948 hasRelatedWork W1968308625 @default.
- W2949677948 hasRelatedWork W1984700119 @default.
- W2949677948 hasRelatedWork W2010749767 @default.
- W2949677948 hasRelatedWork W2011359765 @default.
- W2949677948 hasRelatedWork W2037750031 @default.
- W2949677948 hasRelatedWork W2041751740 @default.
- W2949677948 hasRelatedWork W2117618537 @default.
- W2949677948 hasRelatedWork W2887161428 @default.
- W2949677948 hasRelatedWork W2952697961 @default.
- W2949677948 hasRelatedWork W2963185260 @default.
- W2949677948 hasRelatedWork W2964041938 @default.
- W2949677948 hasRelatedWork W2964821194 @default.
- W2949677948 hasRelatedWork W3038113379 @default.
- W2949677948 hasRelatedWork W3102706553 @default.
- W2949677948 hasRelatedWork W3116627992 @default.
- W2949677948 hasRelatedWork W65264223 @default.
- W2949677948 isParatext "false" @default.
- W2949677948 isRetracted "false" @default.
- W2949677948 magId "2949677948" @default.
- W2949677948 workType "article" @default.