Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949711156> ?p ?o ?g. }
- W2949711156 abstract "Ontology has attracted substantial attention from both academia and industry. Handling uncertainty reasoning is important in researching ontology. For example, when a patient is suffering from cirrhosis, the appearance of abdominal vein varices is four times more likely than the presence of bitter taste. Such medical knowledge is crucial for decision-making in various medical applications but is missing from existing medical ontologies. In this paper, we aim to discover medical knowledge probabilities from electronic medical record (EMR) texts to enrich ontologies. First, we build an ontology by identifying meaningful entity mentions from EMRs. Then, we propose a symptom-dependency-aware naïve Bayes classifier (SDNB) that is based on the assumption that there is a level of dependency among symptoms. To ensure the accuracy of the diagnostic classification, we incorporate the probability of a disease into the ontology via innovative approaches.We conduct a series of experiments to evaluate whether the proposed method can discover meaningful and accurate probabilities for medical knowledge. Based on over 30,000 deidentified medical records, we explore 336 abdominal diseases and 81 related symptoms. Among these 336 gastrointestinal diseases, the probabilities of 31 diseases are obtained via our method. These 31 probabilities of diseases and 189 conditional probabilities between diseases and the symptoms are added into the generated ontology.In this paper, we propose a medical knowledge probability discovery method that is based on the analysis and extraction of EMR text data for enriching a medical ontology with probability information. The experimental results demonstrate that the proposed method can effectively identify accurate medical knowledge probability information from EMR data. In addition, the proposed method can efficiently and accurately calculate the probability of a patient suffering from a specified disease, thereby demonstrating the advantage of combining an ontology and a symptom-dependency-aware naïve Bayes classifier." @default.
- W2949711156 created "2019-06-27" @default.
- W2949711156 creator A5014238603 @default.
- W2949711156 creator A5022672030 @default.
- W2949711156 creator A5046576694 @default.
- W2949711156 creator A5074799043 @default.
- W2949711156 creator A5083369457 @default.
- W2949711156 date "2019-06-13" @default.
- W2949711156 modified "2023-10-13" @default.
- W2949711156 title "Enhancing ontology-driven diagnostic reasoning with a symptom-dependency-aware Naïve Bayes classifier" @default.
- W2949711156 cites W127334369 @default.
- W2949711156 cites W1979432867 @default.
- W2949711156 cites W2004910511 @default.
- W2949711156 cites W2021430303 @default.
- W2949711156 cites W2022644199 @default.
- W2949711156 cites W2029249040 @default.
- W2949711156 cites W2041073071 @default.
- W2949711156 cites W2048817927 @default.
- W2949711156 cites W2051842656 @default.
- W2949711156 cites W2060367276 @default.
- W2949711156 cites W2092926517 @default.
- W2949711156 cites W2117230297 @default.
- W2949711156 cites W2119332773 @default.
- W2949711156 cites W2119710029 @default.
- W2949711156 cites W2119909508 @default.
- W2949711156 cites W2120992942 @default.
- W2949711156 cites W2121382432 @default.
- W2949711156 cites W2134498732 @default.
- W2949711156 cites W2137079713 @default.
- W2949711156 cites W2152415104 @default.
- W2949711156 cites W2154674126 @default.
- W2949711156 cites W2159092541 @default.
- W2949711156 cites W2162237605 @default.
- W2949711156 cites W2163241422 @default.
- W2949711156 cites W2166861608 @default.
- W2949711156 cites W2285122704 @default.
- W2949711156 cites W2291501036 @default.
- W2949711156 cites W2321431076 @default.
- W2949711156 cites W2327895505 @default.
- W2949711156 cites W2468628434 @default.
- W2949711156 cites W2469314752 @default.
- W2949711156 cites W2600356345 @default.
- W2949711156 cites W2604713576 @default.
- W2949711156 cites W2741502284 @default.
- W2949711156 cites W2749087070 @default.
- W2949711156 cites W2767287441 @default.
- W2949711156 cites W2909799176 @default.
- W2949711156 cites W2943980166 @default.
- W2949711156 cites W618046730 @default.
- W2949711156 doi "https://doi.org/10.1186/s12859-019-2924-0" @default.
- W2949711156 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6567606" @default.
- W2949711156 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31196129" @default.
- W2949711156 hasPublicationYear "2019" @default.
- W2949711156 type Work @default.
- W2949711156 sameAs 2949711156 @default.
- W2949711156 citedByCount "15" @default.
- W2949711156 countsByYear W29497111562019 @default.
- W2949711156 countsByYear W29497111562020 @default.
- W2949711156 countsByYear W29497111562021 @default.
- W2949711156 countsByYear W29497111562022 @default.
- W2949711156 countsByYear W29497111562023 @default.
- W2949711156 crossrefType "journal-article" @default.
- W2949711156 hasAuthorship W2949711156A5014238603 @default.
- W2949711156 hasAuthorship W2949711156A5022672030 @default.
- W2949711156 hasAuthorship W2949711156A5046576694 @default.
- W2949711156 hasAuthorship W2949711156A5074799043 @default.
- W2949711156 hasAuthorship W2949711156A5083369457 @default.
- W2949711156 hasBestOaLocation W29497111561 @default.
- W2949711156 hasConcept C107673813 @default.
- W2949711156 hasConcept C111472728 @default.
- W2949711156 hasConcept C119857082 @default.
- W2949711156 hasConcept C12267149 @default.
- W2949711156 hasConcept C124101348 @default.
- W2949711156 hasConcept C126838900 @default.
- W2949711156 hasConcept C137982476 @default.
- W2949711156 hasConcept C138885662 @default.
- W2949711156 hasConcept C154945302 @default.
- W2949711156 hasConcept C195910791 @default.
- W2949711156 hasConcept C19768560 @default.
- W2949711156 hasConcept C204321447 @default.
- W2949711156 hasConcept C207201462 @default.
- W2949711156 hasConcept C2129575 @default.
- W2949711156 hasConcept C23123220 @default.
- W2949711156 hasConcept C25810664 @default.
- W2949711156 hasConcept C41008148 @default.
- W2949711156 hasConcept C52001869 @default.
- W2949711156 hasConcept C71924100 @default.
- W2949711156 hasConcept C78726541 @default.
- W2949711156 hasConcept C95623464 @default.
- W2949711156 hasConcept C98893333 @default.
- W2949711156 hasConceptScore W2949711156C107673813 @default.
- W2949711156 hasConceptScore W2949711156C111472728 @default.
- W2949711156 hasConceptScore W2949711156C119857082 @default.
- W2949711156 hasConceptScore W2949711156C12267149 @default.
- W2949711156 hasConceptScore W2949711156C124101348 @default.
- W2949711156 hasConceptScore W2949711156C126838900 @default.
- W2949711156 hasConceptScore W2949711156C137982476 @default.
- W2949711156 hasConceptScore W2949711156C138885662 @default.
- W2949711156 hasConceptScore W2949711156C154945302 @default.
- W2949711156 hasConceptScore W2949711156C195910791 @default.