Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949740343> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2949740343 abstract "The past three decades have shown that lots of questions in holomorphic dynamics can be reduced to tractable combinatorial problems. One of the main objectives of this thesis is to gain better understanding of dynamics of the iteration of rational maps via developing good combinatorial models. The first such models, given by finite invariant graphs, were constructed for postcritically-finite polynomial maps and were used to classify these maps. However, the case of general rational maps is much more complicated and still draws lots of attention.In this work we construct combinatorial models for the family of expanding Thurston maps, which include all postcritically-finite rational maps with Julia sets given by the entire Riemann sphere. We show that each sufficiently large iterate of an expanding Thurston map has an invariant planar embedded tree containing the postcritical set. The latter result can be extended to the case of postcritically-finite rational maps with Sierpinski carpet Julia sets. In the thesis, we also provide a complete classification of critically fixed rational maps. The main tool is, again, a certain planar embedded invariant graph, called the Tischler graph, associated to each such map. We show that these graphs are always connected, answering a question raised by Pilgrim.We use the combinatorial models given by invariant graphs to study properties of the iterated monodromy groups (IMG's) of different classes of Thurston maps. In particular, we show that, in the presence of an invariant tree, the IMG's can be described in a very simple combinatorial way. This allows us to describe the IMG's that arise from critically fixed rational maps and conclude that these maps have amenable IMG's of exponential growth. Finally, in a joint work with Daniel Meyer, we construct conceptually new examples of rational maps with the IMG's of exponential growth." @default.
- W2949740343 created "2019-06-27" @default.
- W2949740343 creator A5039016571 @default.
- W2949740343 date "2017-10-12" @default.
- W2949740343 modified "2023-10-18" @default.
- W2949740343 title "Invariant graphs, tilings, and iterated monodromy groups" @default.
- W2949740343 hasPublicationYear "2017" @default.
- W2949740343 type Work @default.
- W2949740343 sameAs 2949740343 @default.
- W2949740343 citedByCount "2" @default.
- W2949740343 countsByYear W29497403432019 @default.
- W2949740343 countsByYear W29497403432020 @default.
- W2949740343 crossrefType "journal-article" @default.
- W2949740343 hasAuthorship W2949740343A5039016571 @default.
- W2949740343 hasConcept C101837359 @default.
- W2949740343 hasConcept C114614502 @default.
- W2949740343 hasConcept C118615104 @default.
- W2949740343 hasConcept C132525143 @default.
- W2949740343 hasConcept C134306372 @default.
- W2949740343 hasConcept C140479938 @default.
- W2949740343 hasConcept C187619975 @default.
- W2949740343 hasConcept C190470478 @default.
- W2949740343 hasConcept C33923547 @default.
- W2949740343 hasConcept C37914503 @default.
- W2949740343 hasConceptScore W2949740343C101837359 @default.
- W2949740343 hasConceptScore W2949740343C114614502 @default.
- W2949740343 hasConceptScore W2949740343C118615104 @default.
- W2949740343 hasConceptScore W2949740343C132525143 @default.
- W2949740343 hasConceptScore W2949740343C134306372 @default.
- W2949740343 hasConceptScore W2949740343C140479938 @default.
- W2949740343 hasConceptScore W2949740343C187619975 @default.
- W2949740343 hasConceptScore W2949740343C190470478 @default.
- W2949740343 hasConceptScore W2949740343C33923547 @default.
- W2949740343 hasConceptScore W2949740343C37914503 @default.
- W2949740343 hasLocation W29497403431 @default.
- W2949740343 hasOpenAccess W2949740343 @default.
- W2949740343 hasPrimaryLocation W29497403431 @default.
- W2949740343 hasRelatedWork W1592410163 @default.
- W2949740343 hasRelatedWork W1663448082 @default.
- W2949740343 hasRelatedWork W1846422525 @default.
- W2949740343 hasRelatedWork W2079379422 @default.
- W2949740343 hasRelatedWork W2221542005 @default.
- W2949740343 hasRelatedWork W2298282381 @default.
- W2949740343 hasRelatedWork W2529885880 @default.
- W2949740343 hasRelatedWork W2595435311 @default.
- W2949740343 hasRelatedWork W2620735475 @default.
- W2949740343 hasRelatedWork W2808019942 @default.
- W2949740343 hasRelatedWork W2953085244 @default.
- W2949740343 hasRelatedWork W2975019706 @default.
- W2949740343 hasRelatedWork W2990702829 @default.
- W2949740343 hasRelatedWork W2996640499 @default.
- W2949740343 hasRelatedWork W3015480184 @default.
- W2949740343 hasRelatedWork W3036933250 @default.
- W2949740343 hasRelatedWork W3045739785 @default.
- W2949740343 hasRelatedWork W3090149717 @default.
- W2949740343 hasRelatedWork W3098191250 @default.
- W2949740343 hasRelatedWork W3099442300 @default.
- W2949740343 isParatext "false" @default.
- W2949740343 isRetracted "false" @default.
- W2949740343 magId "2949740343" @default.
- W2949740343 workType "article" @default.