Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949743585> ?p ?o ?g. }
- W2949743585 endingPage "82671" @default.
- W2949743585 startingPage "82649" @default.
- W2949743585 abstract "Service level agreement (SLA) management is one of the key issues in cloud computing. The primary goal of a service provider is to minimize the risk of service violations, as these results in penalties in terms of both money and a decrease in trustworthiness. To avoid SLA violations, the service provider needs to predict the likelihood of violation for each SLO and its measurable characteristics (QoS parameters) and take immediate action to avoid violations occurring. There are several approaches discussed in the literature to predict service violation; however, none of these explores how a change in control parameters and the freshness of data impact prediction accuracy and result in the effective management of an SLA of the cloud service provider. The contribution of this paper is two-fold. First, we analyzed the accuracy of six widely used prediction algorithms-simple exponential smoothing, simple moving average, weighted moving average, Holt-Winter double exponential smoothing, extrapolation, and the autoregressive integrated moving average-by varying their individual control parameters. Each of the approaches is compared to 10 different datasets at different time intervals between 5 min and 4 weeks. Second, we analyzed the prediction accuracy of the simple exponential smoothing method by considering the freshness of a data; i.e., how the accuracy varies in the initial time period of prediction compared to later ones. To achieve this, we divided the cloud QoS dataset into sets of input values that range from 100 to 500 intervals in sets of 1-100, 1-200, 1-300, 1-400, and 1-500. From the analysis, we observed that different prediction methods behave differently based on the control parameter and the nature of the dataset. The analysis helps service providers choose a suitable prediction method with optimal control parameters so that they can obtain accurate prediction results to manage SLA intelligently and avoid violation penalties." @default.
- W2949743585 created "2019-06-27" @default.
- W2949743585 creator A5060587687 @default.
- W2949743585 creator A5073530240 @default.
- W2949743585 date "2019-01-01" @default.
- W2949743585 modified "2023-10-01" @default.
- W2949743585 title "Analysing Cloud QoS Prediction Approaches and Its Control Parameters: Considering Overall Accuracy and Freshness of a Dataset" @default.
- W2949743585 cites W1557855756 @default.
- W2949743585 cites W1558424403 @default.
- W2949743585 cites W1581134548 @default.
- W2949743585 cites W1894439785 @default.
- W2949743585 cites W1980596633 @default.
- W2949743585 cites W1986082223 @default.
- W2949743585 cites W1993064507 @default.
- W2949743585 cites W1993320554 @default.
- W2949743585 cites W2004945920 @default.
- W2949743585 cites W2014895090 @default.
- W2949743585 cites W2032927332 @default.
- W2949743585 cites W2037111396 @default.
- W2949743585 cites W2048849338 @default.
- W2949743585 cites W2049980558 @default.
- W2949743585 cites W2055764609 @default.
- W2949743585 cites W2060836686 @default.
- W2949743585 cites W2070382733 @default.
- W2949743585 cites W2073178357 @default.
- W2949743585 cites W2084672768 @default.
- W2949743585 cites W2088950591 @default.
- W2949743585 cites W2091381870 @default.
- W2949743585 cites W2110102832 @default.
- W2949743585 cites W2111632938 @default.
- W2949743585 cites W2111965688 @default.
- W2949743585 cites W2114209105 @default.
- W2949743585 cites W2119264846 @default.
- W2949743585 cites W2119438912 @default.
- W2949743585 cites W2123476762 @default.
- W2949743585 cites W2132589240 @default.
- W2949743585 cites W2132782512 @default.
- W2949743585 cites W2140597141 @default.
- W2949743585 cites W2156260673 @default.
- W2949743585 cites W2162174678 @default.
- W2949743585 cites W2162478414 @default.
- W2949743585 cites W2162983389 @default.
- W2949743585 cites W2164998137 @default.
- W2949743585 cites W2167036165 @default.
- W2949743585 cites W2168429622 @default.
- W2949743585 cites W2178081558 @default.
- W2949743585 cites W2182261282 @default.
- W2949743585 cites W2319129588 @default.
- W2949743585 cites W2510603126 @default.
- W2949743585 cites W2519931003 @default.
- W2949743585 cites W2547811288 @default.
- W2949743585 cites W2562873010 @default.
- W2949743585 cites W2597121862 @default.
- W2949743585 cites W2738639449 @default.
- W2949743585 cites W2753371392 @default.
- W2949743585 cites W2756214418 @default.
- W2949743585 cites W2765798877 @default.
- W2949743585 cites W2780595436 @default.
- W2949743585 cites W2783395064 @default.
- W2949743585 cites W2791803806 @default.
- W2949743585 cites W2855579414 @default.
- W2949743585 cites W2888617857 @default.
- W2949743585 cites W2897440829 @default.
- W2949743585 cites W2902301748 @default.
- W2949743585 cites W2902493494 @default.
- W2949743585 cites W2912951953 @default.
- W2949743585 cites W2921369641 @default.
- W2949743585 cites W2922098752 @default.
- W2949743585 cites W3081405102 @default.
- W2949743585 cites W3148442452 @default.
- W2949743585 cites W988335224 @default.
- W2949743585 doi "https://doi.org/10.1109/access.2019.2923706" @default.
- W2949743585 hasPublicationYear "2019" @default.
- W2949743585 type Work @default.
- W2949743585 sameAs 2949743585 @default.
- W2949743585 citedByCount "32" @default.
- W2949743585 countsByYear W29497435852019 @default.
- W2949743585 countsByYear W29497435852020 @default.
- W2949743585 countsByYear W29497435852021 @default.
- W2949743585 countsByYear W29497435852022 @default.
- W2949743585 countsByYear W29497435852023 @default.
- W2949743585 crossrefType "journal-article" @default.
- W2949743585 hasAuthorship W2949743585A5060587687 @default.
- W2949743585 hasAuthorship W2949743585A5073530240 @default.
- W2949743585 hasBestOaLocation W29497435851 @default.
- W2949743585 hasConcept C105795698 @default.
- W2949743585 hasConcept C111919701 @default.
- W2949743585 hasConcept C116537 @default.
- W2949743585 hasConcept C124101348 @default.
- W2949743585 hasConcept C132459708 @default.
- W2949743585 hasConcept C133710760 @default.
- W2949743585 hasConcept C136264566 @default.
- W2949743585 hasConcept C159877910 @default.
- W2949743585 hasConcept C162324750 @default.
- W2949743585 hasConcept C175706884 @default.
- W2949743585 hasConcept C181889124 @default.
- W2949743585 hasConcept C184842701 @default.
- W2949743585 hasConcept C2778160497 @default.