Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949758001> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2949758001 abstract "The main goal of this paper is to study the discretization problem for the hyperbolic cross trigonometric polynomials. This important problem turns out to be very difficult. In this paper we begin a systematic study of this problem and demonstrate two different techniques -- the probabilistic and the number theoretical techniques." @default.
- W2949758001 created "2019-06-27" @default.
- W2949758001 creator A5089517099 @default.
- W2949758001 date "2017-02-06" @default.
- W2949758001 modified "2023-10-18" @default.
- W2949758001 title "The Marcinkiewicz-type discretization theorems for the hyperbolic cross polynomials" @default.
- W2949758001 cites W1014283606 @default.
- W2949758001 cites W1642222099 @default.
- W2949758001 cites W2014279255 @default.
- W2949758001 cites W2035168057 @default.
- W2949758001 cites W2054098737 @default.
- W2949758001 cites W2148195034 @default.
- W2949758001 cites W2230098838 @default.
- W2949758001 cites W2288740352 @default.
- W2949758001 cites W2300951034 @default.
- W2949758001 cites W2599366207 @default.
- W2949758001 cites W2913359901 @default.
- W2949758001 cites W2913975905 @default.
- W2949758001 doi "https://doi.org/10.48550/arxiv.1702.01617" @default.
- W2949758001 hasPublicationYear "2017" @default.
- W2949758001 type Work @default.
- W2949758001 sameAs 2949758001 @default.
- W2949758001 citedByCount "2" @default.
- W2949758001 countsByYear W29497580012017 @default.
- W2949758001 crossrefType "posted-content" @default.
- W2949758001 hasAuthorship W2949758001A5089517099 @default.
- W2949758001 hasBestOaLocation W29497580011 @default.
- W2949758001 hasConcept C105795698 @default.
- W2949758001 hasConcept C134306372 @default.
- W2949758001 hasConcept C136119220 @default.
- W2949758001 hasConcept C18903297 @default.
- W2949758001 hasConcept C202444582 @default.
- W2949758001 hasConcept C2777299769 @default.
- W2949758001 hasConcept C28826006 @default.
- W2949758001 hasConcept C29001434 @default.
- W2949758001 hasConcept C33923547 @default.
- W2949758001 hasConcept C49937458 @default.
- W2949758001 hasConcept C73000952 @default.
- W2949758001 hasConcept C86803240 @default.
- W2949758001 hasConcept C92047909 @default.
- W2949758001 hasConceptScore W2949758001C105795698 @default.
- W2949758001 hasConceptScore W2949758001C134306372 @default.
- W2949758001 hasConceptScore W2949758001C136119220 @default.
- W2949758001 hasConceptScore W2949758001C18903297 @default.
- W2949758001 hasConceptScore W2949758001C202444582 @default.
- W2949758001 hasConceptScore W2949758001C2777299769 @default.
- W2949758001 hasConceptScore W2949758001C28826006 @default.
- W2949758001 hasConceptScore W2949758001C29001434 @default.
- W2949758001 hasConceptScore W2949758001C33923547 @default.
- W2949758001 hasConceptScore W2949758001C49937458 @default.
- W2949758001 hasConceptScore W2949758001C73000952 @default.
- W2949758001 hasConceptScore W2949758001C86803240 @default.
- W2949758001 hasConceptScore W2949758001C92047909 @default.
- W2949758001 hasLocation W29497580011 @default.
- W2949758001 hasOpenAccess W2949758001 @default.
- W2949758001 hasPrimaryLocation W29497580011 @default.
- W2949758001 hasRelatedWork W2000003849 @default.
- W2949758001 hasRelatedWork W2019004897 @default.
- W2949758001 hasRelatedWork W2047189090 @default.
- W2949758001 hasRelatedWork W2079638187 @default.
- W2949758001 hasRelatedWork W2094856695 @default.
- W2949758001 hasRelatedWork W2193902272 @default.
- W2949758001 hasRelatedWork W2438149955 @default.
- W2949758001 hasRelatedWork W2962682765 @default.
- W2949758001 hasRelatedWork W2963526848 @default.
- W2949758001 hasRelatedWork W2966199516 @default.
- W2949758001 isParatext "false" @default.
- W2949758001 isRetracted "false" @default.
- W2949758001 magId "2949758001" @default.
- W2949758001 workType "article" @default.