Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949779675> ?p ?o ?g. }
- W2949779675 abstract "One of the central issues in the hidden subgroup problem is to bound the sample complexity, i.e., the number of identical samples of coset states sufficient and necessary to solve the problem. In this paper, we present general bounds for the sample complexity of the identification and decision versions of the hidden subgroup problem. As a consequence of the bounds, we show that the sample complexity for both of the decision and identification versions is $Theta(log|HH|/log p)$ for a candidate set $HH$ of hidden subgroups in the case that the candidate subgroups have the same prime order $p$, which implies that the decision version is at least as hard as the identification version in this case. In particular, it does so for the important instances such as the dihedral and the symmetric hidden subgroup problems. Moreover, the upper bound of the identification is attained by the pretty good measurement. This shows that the pretty good measurement can identify any hidden subgroup of an arbitrary group with at most $O(log|HH|)$ samples." @default.
- W2949779675 created "2019-06-27" @default.
- W2949779675 creator A5024624998 @default.
- W2949779675 creator A5069935086 @default.
- W2949779675 creator A5079746997 @default.
- W2949779675 date "2006-04-24" @default.
- W2949779675 modified "2023-09-27" @default.
- W2949779675 title "Quantum Measurements for Hidden Subgroup Problems with Optimal Sample Complexity" @default.
- W2949779675 cites W1487721777 @default.
- W2949779675 cites W1490590996 @default.
- W2949779675 cites W1560182867 @default.
- W2949779675 cites W1603109705 @default.
- W2949779675 cites W1604318691 @default.
- W2949779675 cites W1631356911 @default.
- W2949779675 cites W1640526923 @default.
- W2949779675 cites W1651618155 @default.
- W2949779675 cites W1671272902 @default.
- W2949779675 cites W1677135435 @default.
- W2949779675 cites W1967900748 @default.
- W2949779675 cites W2004765485 @default.
- W2949779675 cites W2009106180 @default.
- W2949779675 cites W203131757 @default.
- W2949779675 cites W2032830293 @default.
- W2949779675 cites W2033934891 @default.
- W2949779675 cites W2035742807 @default.
- W2949779675 cites W2044747430 @default.
- W2949779675 cites W2054912210 @default.
- W2949779675 cites W2057065544 @default.
- W2949779675 cites W2066153786 @default.
- W2949779675 cites W2097358487 @default.
- W2949779675 cites W2099102182 @default.
- W2949779675 cites W2117584890 @default.
- W2949779675 cites W2126166880 @default.
- W2949779675 cites W2140496956 @default.
- W2949779675 cites W2171692676 @default.
- W2949779675 cites W2780935430 @default.
- W2949779675 cites W2784965142 @default.
- W2949779675 cites W2794950069 @default.
- W2949779675 cites W2798707604 @default.
- W2949779675 cites W2949168465 @default.
- W2949779675 cites W2950451768 @default.
- W2949779675 cites W2962738101 @default.
- W2949779675 cites W2953849388 @default.
- W2949779675 hasPublicationYear "2006" @default.
- W2949779675 type Work @default.
- W2949779675 sameAs 2949779675 @default.
- W2949779675 citedByCount "1" @default.
- W2949779675 crossrefType "posted-content" @default.
- W2949779675 hasAuthorship W2949779675A5024624998 @default.
- W2949779675 hasAuthorship W2949779675A5069935086 @default.
- W2949779675 hasAuthorship W2949779675A5079746997 @default.
- W2949779675 hasConcept C10138342 @default.
- W2949779675 hasConcept C11413529 @default.
- W2949779675 hasConcept C114614502 @default.
- W2949779675 hasConcept C115988155 @default.
- W2949779675 hasConcept C116834253 @default.
- W2949779675 hasConcept C118615104 @default.
- W2949779675 hasConcept C121332964 @default.
- W2949779675 hasConcept C134306372 @default.
- W2949779675 hasConcept C154945302 @default.
- W2949779675 hasConcept C162324750 @default.
- W2949779675 hasConcept C177264268 @default.
- W2949779675 hasConcept C179799912 @default.
- W2949779675 hasConcept C182306322 @default.
- W2949779675 hasConcept C184992742 @default.
- W2949779675 hasConcept C198531522 @default.
- W2949779675 hasConcept C199360897 @default.
- W2949779675 hasConcept C2778445095 @default.
- W2949779675 hasConcept C2781311116 @default.
- W2949779675 hasConcept C311688 @default.
- W2949779675 hasConcept C33923547 @default.
- W2949779675 hasConcept C41008148 @default.
- W2949779675 hasConcept C59822182 @default.
- W2949779675 hasConcept C62520636 @default.
- W2949779675 hasConcept C72409365 @default.
- W2949779675 hasConcept C77553402 @default.
- W2949779675 hasConcept C85307737 @default.
- W2949779675 hasConcept C86803240 @default.
- W2949779675 hasConcept C97355855 @default.
- W2949779675 hasConceptScore W2949779675C10138342 @default.
- W2949779675 hasConceptScore W2949779675C11413529 @default.
- W2949779675 hasConceptScore W2949779675C114614502 @default.
- W2949779675 hasConceptScore W2949779675C115988155 @default.
- W2949779675 hasConceptScore W2949779675C116834253 @default.
- W2949779675 hasConceptScore W2949779675C118615104 @default.
- W2949779675 hasConceptScore W2949779675C121332964 @default.
- W2949779675 hasConceptScore W2949779675C134306372 @default.
- W2949779675 hasConceptScore W2949779675C154945302 @default.
- W2949779675 hasConceptScore W2949779675C162324750 @default.
- W2949779675 hasConceptScore W2949779675C177264268 @default.
- W2949779675 hasConceptScore W2949779675C179799912 @default.
- W2949779675 hasConceptScore W2949779675C182306322 @default.
- W2949779675 hasConceptScore W2949779675C184992742 @default.
- W2949779675 hasConceptScore W2949779675C198531522 @default.
- W2949779675 hasConceptScore W2949779675C199360897 @default.
- W2949779675 hasConceptScore W2949779675C2778445095 @default.
- W2949779675 hasConceptScore W2949779675C2781311116 @default.
- W2949779675 hasConceptScore W2949779675C311688 @default.
- W2949779675 hasConceptScore W2949779675C33923547 @default.
- W2949779675 hasConceptScore W2949779675C41008148 @default.