Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949803133> ?p ?o ?g. }
- W2949803133 endingPage "3502" @default.
- W2949803133 startingPage "3487" @default.
- W2949803133 abstract "Structural health monitoring plays a significant role in providing information regarding the performance of structures throughout their life spans. However, information that is directly extracted from monitored data is usually susceptible to uncertainties and not reliable enough to be used for structural investigations. Finite element model updating is an accredited framework that reliably identifies structural behavior. Recently, the modular Bayesian approach has emerged as a probabilistic technique in calibrating the finite element model of structures and comprehensively addressing uncertainties. However, few studies have investigated its performance on real structures. In this article, modular Bayesian approach is applied to calibrate the finite element model of a lab-scaled concrete box girder bridge. This study is the first to use the modular Bayesian approach to update the initial finite element model of a real structure for two states—undamaged and damaged conditions—in which the damaged state represents changes in structural parameters as a result of aging or overloading. The application of the modular Bayesian approach in the two states provides an opportunity to examine the performance of the approach with observed evidence. A discrepancy function is used to identify the deviation between the outputs of the experimental and numerical models. To alleviate computational burden, the numerical model and the model discrepancy function are replaced by Gaussian processes. Results indicate a significant reduction in the stiffness of concrete in the damaged state, which is identical to cracks observed on the body of the structure. The discrepancy function reaches satisfying ranges in both states, which implies that the properties of the structure are predicted accurately. Consequently, the proposed methodology contributes to a more reliable judgment about structural safety." @default.
- W2949803133 created "2019-06-27" @default.
- W2949803133 creator A5026572909 @default.
- W2949803133 creator A5032121205 @default.
- W2949803133 creator A5049824503 @default.
- W2949803133 creator A5080975858 @default.
- W2949803133 date "2019-07-01" @default.
- W2949803133 modified "2023-09-27" @default.
- W2949803133 title "Vibration-based Bayesian model updating of civil engineering structures applying Gaussian process metamodel" @default.
- W2949803133 cites W1966534866 @default.
- W2949803133 cites W1972023825 @default.
- W2949803133 cites W1973333099 @default.
- W2949803133 cites W1973410308 @default.
- W2949803133 cites W2024292495 @default.
- W2949803133 cites W2027319489 @default.
- W2949803133 cites W2032526577 @default.
- W2949803133 cites W2038817616 @default.
- W2949803133 cites W2065513364 @default.
- W2949803133 cites W2065985452 @default.
- W2949803133 cites W2072028796 @default.
- W2949803133 cites W2078454401 @default.
- W2949803133 cites W2080411662 @default.
- W2949803133 cites W2125107816 @default.
- W2949803133 cites W2155162055 @default.
- W2949803133 cites W2163757739 @default.
- W2949803133 cites W2166670624 @default.
- W2949803133 cites W2342954243 @default.
- W2949803133 cites W2594553419 @default.
- W2949803133 cites W2770416133 @default.
- W2949803133 cites W2807777425 @default.
- W2949803133 cites W2891464436 @default.
- W2949803133 cites W2898733155 @default.
- W2949803133 cites W2911905239 @default.
- W2949803133 doi "https://doi.org/10.1177/1369433219858723" @default.
- W2949803133 hasPublicationYear "2019" @default.
- W2949803133 type Work @default.
- W2949803133 sameAs 2949803133 @default.
- W2949803133 citedByCount "13" @default.
- W2949803133 countsByYear W29498031332020 @default.
- W2949803133 countsByYear W29498031332021 @default.
- W2949803133 countsByYear W29498031332022 @default.
- W2949803133 countsByYear W29498031332023 @default.
- W2949803133 crossrefType "journal-article" @default.
- W2949803133 hasAuthorship W2949803133A5026572909 @default.
- W2949803133 hasAuthorship W2949803133A5032121205 @default.
- W2949803133 hasAuthorship W2949803133A5049824503 @default.
- W2949803133 hasAuthorship W2949803133A5080975858 @default.
- W2949803133 hasBestOaLocation W29498031331 @default.
- W2949803133 hasConcept C101468663 @default.
- W2949803133 hasConcept C107673813 @default.
- W2949803133 hasConcept C111335779 @default.
- W2949803133 hasConcept C111919701 @default.
- W2949803133 hasConcept C11413529 @default.
- W2949803133 hasConcept C119857082 @default.
- W2949803133 hasConcept C121332964 @default.
- W2949803133 hasConcept C127413603 @default.
- W2949803133 hasConcept C135628077 @default.
- W2949803133 hasConcept C14036430 @default.
- W2949803133 hasConcept C154945302 @default.
- W2949803133 hasConcept C160234255 @default.
- W2949803133 hasConcept C163716315 @default.
- W2949803133 hasConcept C199360897 @default.
- W2949803133 hasConcept C2524010 @default.
- W2949803133 hasConcept C2776247918 @default.
- W2949803133 hasConcept C2779372316 @default.
- W2949803133 hasConcept C33923547 @default.
- W2949803133 hasConcept C41008148 @default.
- W2949803133 hasConcept C49937458 @default.
- W2949803133 hasConcept C61326573 @default.
- W2949803133 hasConcept C62520636 @default.
- W2949803133 hasConcept C66938386 @default.
- W2949803133 hasConcept C78458016 @default.
- W2949803133 hasConcept C81692654 @default.
- W2949803133 hasConcept C86610423 @default.
- W2949803133 hasConcept C86803240 @default.
- W2949803133 hasConcept C98045186 @default.
- W2949803133 hasConceptScore W2949803133C101468663 @default.
- W2949803133 hasConceptScore W2949803133C107673813 @default.
- W2949803133 hasConceptScore W2949803133C111335779 @default.
- W2949803133 hasConceptScore W2949803133C111919701 @default.
- W2949803133 hasConceptScore W2949803133C11413529 @default.
- W2949803133 hasConceptScore W2949803133C119857082 @default.
- W2949803133 hasConceptScore W2949803133C121332964 @default.
- W2949803133 hasConceptScore W2949803133C127413603 @default.
- W2949803133 hasConceptScore W2949803133C135628077 @default.
- W2949803133 hasConceptScore W2949803133C14036430 @default.
- W2949803133 hasConceptScore W2949803133C154945302 @default.
- W2949803133 hasConceptScore W2949803133C160234255 @default.
- W2949803133 hasConceptScore W2949803133C163716315 @default.
- W2949803133 hasConceptScore W2949803133C199360897 @default.
- W2949803133 hasConceptScore W2949803133C2524010 @default.
- W2949803133 hasConceptScore W2949803133C2776247918 @default.
- W2949803133 hasConceptScore W2949803133C2779372316 @default.
- W2949803133 hasConceptScore W2949803133C33923547 @default.
- W2949803133 hasConceptScore W2949803133C41008148 @default.
- W2949803133 hasConceptScore W2949803133C49937458 @default.
- W2949803133 hasConceptScore W2949803133C61326573 @default.
- W2949803133 hasConceptScore W2949803133C62520636 @default.