Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949811693> ?p ?o ?g. }
- W2949811693 abstract "We present a Deep Convolutional Neural Network architecture which serves as a generic image-to-image regressor that can be trained end-to-end without any further machinery. Our proposed architecture: the Recursively Branched Deconvolutional Network (RBDN) develops a cheap multi-context image representation very early on using an efficient recursive branching scheme with extensive parameter sharing and learnable upsampling. This multi-context representation is subjected to a highly non-linear locality preserving transformation by the remainder of our network comprising of a series of convolutions/deconvolutions without any spatial downsampling. The RBDN architecture is fully convolutional and can handle variable sized images during inference. We provide qualitative/quantitative results on $3$ diverse tasks: relighting, denoising and colorization and show that our proposed RBDN architecture obtains comparable results to the state-of-the-art on each of these tasks when used off-the-shelf without any post processing or task-specific architectural modifications." @default.
- W2949811693 created "2019-06-27" @default.
- W2949811693 creator A5029980724 @default.
- W2949811693 creator A5038267072 @default.
- W2949811693 creator A5055264952 @default.
- W2949811693 date "2016-12-10" @default.
- W2949811693 modified "2023-09-27" @default.
- W2949811693 title "Generalized Deep Image to Image Regression" @default.
- W2949811693 cites W1522301498 @default.
- W2949811693 cites W1686810756 @default.
- W2949811693 cites W1948751323 @default.
- W2949811693 cites W1955857676 @default.
- W2949811693 cites W1978749115 @default.
- W2949811693 cites W1986416281 @default.
- W2949811693 cites W198644033 @default.
- W2949811693 cites W2018746048 @default.
- W2949811693 cites W2027805700 @default.
- W2949811693 cites W2031489346 @default.
- W2949811693 cites W2035746673 @default.
- W2949811693 cites W2037642501 @default.
- W2949811693 cites W2045079989 @default.
- W2949811693 cites W2048695508 @default.
- W2949811693 cites W2056370875 @default.
- W2949811693 cites W2058005980 @default.
- W2949811693 cites W2070653370 @default.
- W2949811693 cites W2092179111 @default.
- W2949811693 cites W2098477387 @default.
- W2949811693 cites W2099471712 @default.
- W2949811693 cites W2108428911 @default.
- W2949811693 cites W2117539524 @default.
- W2949811693 cites W2132467081 @default.
- W2949811693 cites W2134311243 @default.
- W2949811693 cites W2138019504 @default.
- W2949811693 cites W2146337213 @default.
- W2949811693 cites W2160341927 @default.
- W2949811693 cites W2164847484 @default.
- W2949811693 cites W2167765850 @default.
- W2949811693 cites W2169321544 @default.
- W2949811693 cites W2171692249 @default.
- W2949811693 cites W2172275395 @default.
- W2949811693 cites W2194775991 @default.
- W2949811693 cites W2211456655 @default.
- W2949811693 cites W2240798854 @default.
- W2949811693 cites W2272842615 @default.
- W2949811693 cites W2294980445 @default.
- W2949811693 cites W2295537950 @default.
- W2949811693 cites W2412782625 @default.
- W2949811693 cites W2461158874 @default.
- W2949811693 cites W2508741746 @default.
- W2949811693 cites W2513419314 @default.
- W2949811693 cites W2949117887 @default.
- W2949811693 cites W2950064337 @default.
- W2949811693 cites W2950094539 @default.
- W2949811693 cites W2950689937 @default.
- W2949811693 cites W2951708950 @default.
- W2949811693 cites W2952204419 @default.
- W2949811693 cites W2952632681 @default.
- W2949811693 cites W2952637581 @default.
- W2949811693 cites W2953319141 @default.
- W2949811693 cites W2963366932 @default.
- W2949811693 cites W2963881378 @default.
- W2949811693 cites W56688174 @default.
- W2949811693 hasPublicationYear "2016" @default.
- W2949811693 type Work @default.
- W2949811693 sameAs 2949811693 @default.
- W2949811693 citedByCount "2" @default.
- W2949811693 countsByYear W29498116932018 @default.
- W2949811693 countsByYear W29498116932021 @default.
- W2949811693 crossrefType "posted-content" @default.
- W2949811693 hasAuthorship W2949811693A5029980724 @default.
- W2949811693 hasAuthorship W2949811693A5038267072 @default.
- W2949811693 hasAuthorship W2949811693A5055264952 @default.
- W2949811693 hasConcept C110384440 @default.
- W2949811693 hasConcept C115961682 @default.
- W2949811693 hasConcept C123657996 @default.
- W2949811693 hasConcept C142362112 @default.
- W2949811693 hasConcept C151730666 @default.
- W2949811693 hasConcept C153180895 @default.
- W2949811693 hasConcept C153349607 @default.
- W2949811693 hasConcept C154945302 @default.
- W2949811693 hasConcept C17744445 @default.
- W2949811693 hasConcept C193415008 @default.
- W2949811693 hasConcept C199539241 @default.
- W2949811693 hasConcept C2776214188 @default.
- W2949811693 hasConcept C2776359362 @default.
- W2949811693 hasConcept C2779343474 @default.
- W2949811693 hasConcept C38652104 @default.
- W2949811693 hasConcept C41008148 @default.
- W2949811693 hasConcept C80444323 @default.
- W2949811693 hasConcept C81363708 @default.
- W2949811693 hasConcept C86803240 @default.
- W2949811693 hasConcept C94625758 @default.
- W2949811693 hasConceptScore W2949811693C110384440 @default.
- W2949811693 hasConceptScore W2949811693C115961682 @default.
- W2949811693 hasConceptScore W2949811693C123657996 @default.
- W2949811693 hasConceptScore W2949811693C142362112 @default.
- W2949811693 hasConceptScore W2949811693C151730666 @default.
- W2949811693 hasConceptScore W2949811693C153180895 @default.
- W2949811693 hasConceptScore W2949811693C153349607 @default.
- W2949811693 hasConceptScore W2949811693C154945302 @default.