Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949835013> ?p ?o ?g. }
- W2949835013 endingPage "147" @default.
- W2949835013 startingPage "139" @default.
- W2949835013 abstract "Objective: Amyloid A (AA) amyloidosis is found in humans and non-human primates, but quantifying disease risk prior to clinical symptoms is challenging. We applied machine learning to identify the best predictors of amyloidosis in rhesus macaques from available clinical and pathology records. To explore potential biomarkers, we also assessed whether changes in circulating serum amyloid A (SAA) or lipoprotein profiles accompany the disease. Methods: We conducted a retrospective study using 86 cases and 163 controls matched for age and sex. We performed data reduction on 62 clinical, pathological and demographic variables, and applied multivariate modelling and model selection with cross-validation. To test the performance of our final model, we applied it to a replication cohort of 2,775 macaques. Results: The strongest predictors of disease were colitis, gastrointestinal adenocarcinoma, endometriosis, arthritis, trauma, diarrhoea and number of pregnancies. Sensitivity and specificity of the risk model were predicted to be 82%, and were assessed at 79 and 72%, respectively. Total, low density lipoprotein and high density lipoprotein cholesterol levels were significantly lower, and SAA levels and triglyceride-to-HDL ratios were significantly higher in cases versus controls. Conclusion: Machine learning is a powerful approach to identifying macaques at risk of AA amyloidosis, which is accompanied by increased circulating SAA and altered lipoprotein profiles." @default.
- W2949835013 created "2019-06-27" @default.
- W2949835013 creator A5004061972 @default.
- W2949835013 creator A5025865270 @default.
- W2949835013 creator A5030281009 @default.
- W2949835013 creator A5038227958 @default.
- W2949835013 creator A5049570140 @default.
- W2949835013 creator A5062561557 @default.
- W2949835013 creator A5080007279 @default.
- W2949835013 creator A5081622276 @default.
- W2949835013 date "2019-06-18" @default.
- W2949835013 modified "2023-09-26" @default.
- W2949835013 title "Modelling disease risk for amyloid A (AA) amyloidosis in non-human primates using machine learning" @default.
- W2949835013 cites W1116183837 @default.
- W2949835013 cites W115293911 @default.
- W2949835013 cites W148305932 @default.
- W2949835013 cites W1490846006 @default.
- W2949835013 cites W1580333051 @default.
- W2949835013 cites W1974607752 @default.
- W2949835013 cites W1977032720 @default.
- W2949835013 cites W1978252736 @default.
- W2949835013 cites W1993990835 @default.
- W2949835013 cites W2006617902 @default.
- W2949835013 cites W2025596599 @default.
- W2949835013 cites W2029694543 @default.
- W2949835013 cites W2035827656 @default.
- W2949835013 cites W2038734176 @default.
- W2949835013 cites W2042571564 @default.
- W2949835013 cites W2052770133 @default.
- W2949835013 cites W2055774315 @default.
- W2949835013 cites W2060464935 @default.
- W2949835013 cites W2072771627 @default.
- W2949835013 cites W2076658681 @default.
- W2949835013 cites W2076661521 @default.
- W2949835013 cites W2084341220 @default.
- W2949835013 cites W2086702450 @default.
- W2949835013 cites W2095427168 @default.
- W2949835013 cites W2109744229 @default.
- W2949835013 cites W2109779185 @default.
- W2949835013 cites W2115067834 @default.
- W2949835013 cites W2117352205 @default.
- W2949835013 cites W2125621282 @default.
- W2949835013 cites W2142635246 @default.
- W2949835013 cites W2149014771 @default.
- W2949835013 cites W2158698691 @default.
- W2949835013 cites W2158800203 @default.
- W2949835013 cites W2166031138 @default.
- W2949835013 cites W2194982046 @default.
- W2949835013 cites W2225623734 @default.
- W2949835013 cites W2288488821 @default.
- W2949835013 cites W2309305991 @default.
- W2949835013 cites W2328176404 @default.
- W2949835013 cites W2330327041 @default.
- W2949835013 cites W2340325420 @default.
- W2949835013 cites W2415866197 @default.
- W2949835013 cites W2415906233 @default.
- W2949835013 cites W2416131154 @default.
- W2949835013 cites W250200746 @default.
- W2949835013 cites W2884952568 @default.
- W2949835013 cites W4294554434 @default.
- W2949835013 cites W4298872162 @default.
- W2949835013 cites W9646984 @default.
- W2949835013 doi "https://doi.org/10.1080/13506129.2019.1625038" @default.
- W2949835013 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6667354" @default.
- W2949835013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31210531" @default.
- W2949835013 hasPublicationYear "2019" @default.
- W2949835013 type Work @default.
- W2949835013 sameAs 2949835013 @default.
- W2949835013 citedByCount "3" @default.
- W2949835013 countsByYear W29498350132022 @default.
- W2949835013 countsByYear W29498350132023 @default.
- W2949835013 crossrefType "journal-article" @default.
- W2949835013 hasAuthorship W2949835013A5004061972 @default.
- W2949835013 hasAuthorship W2949835013A5025865270 @default.
- W2949835013 hasAuthorship W2949835013A5030281009 @default.
- W2949835013 hasAuthorship W2949835013A5038227958 @default.
- W2949835013 hasAuthorship W2949835013A5049570140 @default.
- W2949835013 hasAuthorship W2949835013A5062561557 @default.
- W2949835013 hasAuthorship W2949835013A5080007279 @default.
- W2949835013 hasAuthorship W2949835013A5081622276 @default.
- W2949835013 hasConcept C126322002 @default.
- W2949835013 hasConcept C143998085 @default.
- W2949835013 hasConcept C2776914184 @default.
- W2949835013 hasConcept C2779134260 @default.
- W2949835013 hasConcept C2779951007 @default.
- W2949835013 hasConcept C55359608 @default.
- W2949835013 hasConcept C71924100 @default.
- W2949835013 hasConcept C90924648 @default.
- W2949835013 hasConceptScore W2949835013C126322002 @default.
- W2949835013 hasConceptScore W2949835013C143998085 @default.
- W2949835013 hasConceptScore W2949835013C2776914184 @default.
- W2949835013 hasConceptScore W2949835013C2779134260 @default.
- W2949835013 hasConceptScore W2949835013C2779951007 @default.
- W2949835013 hasConceptScore W2949835013C55359608 @default.
- W2949835013 hasConceptScore W2949835013C71924100 @default.
- W2949835013 hasConceptScore W2949835013C90924648 @default.
- W2949835013 hasFunder F4320332635 @default.
- W2949835013 hasIssue "3" @default.