Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949856546> ?p ?o ?g. }
- W2949856546 endingPage "295" @default.
- W2949856546 startingPage "285" @default.
- W2949856546 abstract "The strong temporal and spatial gradients in NO2 concentrations frequently observed in urban microenvironments are very difficult to measure and model accurately. Recent developments in low-cost air quality instruments have led to improvement in the spatial coverage of time-resolved measurement, however interpolation is still needed to map pollutant concentrations and connect time-as well as space-dependent variations to urban design features. Here we propose a novel approach that uses a previously-described microscale land use regression (LUR) model to spatially interpolate data from a well-calibrated network of low-cost air quality instruments. We use a semiconducting oxide-based ozone sensor to provide a robust correction of the output of an electrochemical NO2 sensor for ozone interference. We characterise signal noise probably associated with meniscus fluctuations as a significant error source, that can be handled with appropriate signal averaging. The LUR model is used to provide high spatial resolution in the data set, whilst correlation with sensor measurements provides a time-dependent estimate associated with different land use types. Observations from the network of instruments showed marked variability in NO2 concentrations over short distances (on the scale of 100 m), with highest concentrations reached near bus stops, intersections and under shop awnings. This approach connects the complex time- and space-dependent variations to urban design features and is a promising way forward as a basis for objective spatial mapping of time-dependent mean concentration fields and local population exposure estimates." @default.
- W2949856546 created "2019-06-27" @default.
- W2949856546 creator A5003625107 @default.
- W2949856546 creator A5006236512 @default.
- W2949856546 creator A5028711072 @default.
- W2949856546 creator A5033650521 @default.
- W2949856546 creator A5053837229 @default.
- W2949856546 creator A5079973416 @default.
- W2949856546 creator A5091534451 @default.
- W2949856546 date "2019-09-01" @default.
- W2949856546 modified "2023-09-30" @default.
- W2949856546 title "Low-cost sensors and microscale land use regression: Data fusion to resolve air quality variations with high spatial and temporal resolution" @default.
- W2949856546 cites W1965018566 @default.
- W2949856546 cites W1965716933 @default.
- W2949856546 cites W1973282569 @default.
- W2949856546 cites W1974537279 @default.
- W2949856546 cites W1976040789 @default.
- W2949856546 cites W1992611087 @default.
- W2949856546 cites W2007333378 @default.
- W2949856546 cites W2064127932 @default.
- W2949856546 cites W2065947772 @default.
- W2949856546 cites W2075701284 @default.
- W2949856546 cites W2098637521 @default.
- W2949856546 cites W2102125745 @default.
- W2949856546 cites W2110430688 @default.
- W2949856546 cites W2112964831 @default.
- W2949856546 cites W2117072795 @default.
- W2949856546 cites W2129328361 @default.
- W2949856546 cites W2174800157 @default.
- W2949856546 cites W2219175658 @default.
- W2949856546 cites W2340818083 @default.
- W2949856546 cites W2497791775 @default.
- W2949856546 cites W2520558365 @default.
- W2949856546 cites W2526772772 @default.
- W2949856546 cites W2528215532 @default.
- W2949856546 cites W2541880467 @default.
- W2949856546 cites W2611252840 @default.
- W2949856546 cites W2760829798 @default.
- W2949856546 cites W2768159489 @default.
- W2949856546 cites W2768852312 @default.
- W2949856546 cites W2769761482 @default.
- W2949856546 cites W2770791516 @default.
- W2949856546 cites W2786745615 @default.
- W2949856546 cites W2792687421 @default.
- W2949856546 cites W2794880881 @default.
- W2949856546 cites W2798262721 @default.
- W2949856546 cites W2804239627 @default.
- W2949856546 cites W2811500584 @default.
- W2949856546 cites W2890488542 @default.
- W2949856546 cites W2891234347 @default.
- W2949856546 cites W2898191027 @default.
- W2949856546 cites W826033889 @default.
- W2949856546 doi "https://doi.org/10.1016/j.atmosenv.2019.06.019" @default.
- W2949856546 hasPublicationYear "2019" @default.
- W2949856546 type Work @default.
- W2949856546 sameAs 2949856546 @default.
- W2949856546 citedByCount "33" @default.
- W2949856546 countsByYear W29498565462019 @default.
- W2949856546 countsByYear W29498565462020 @default.
- W2949856546 countsByYear W29498565462021 @default.
- W2949856546 countsByYear W29498565462022 @default.
- W2949856546 countsByYear W29498565462023 @default.
- W2949856546 crossrefType "journal-article" @default.
- W2949856546 hasAuthorship W2949856546A5003625107 @default.
- W2949856546 hasAuthorship W2949856546A5006236512 @default.
- W2949856546 hasAuthorship W2949856546A5028711072 @default.
- W2949856546 hasAuthorship W2949856546A5033650521 @default.
- W2949856546 hasAuthorship W2949856546A5053837229 @default.
- W2949856546 hasAuthorship W2949856546A5079973416 @default.
- W2949856546 hasAuthorship W2949856546A5091534451 @default.
- W2949856546 hasConcept C104114177 @default.
- W2949856546 hasConcept C106131492 @default.
- W2949856546 hasConcept C119666444 @default.
- W2949856546 hasConcept C119857082 @default.
- W2949856546 hasConcept C121332964 @default.
- W2949856546 hasConcept C126314574 @default.
- W2949856546 hasConcept C137800194 @default.
- W2949856546 hasConcept C140779682 @default.
- W2949856546 hasConcept C144024400 @default.
- W2949856546 hasConcept C145420912 @default.
- W2949856546 hasConcept C149923435 @default.
- W2949856546 hasConcept C153294291 @default.
- W2949856546 hasConcept C154945302 @default.
- W2949856546 hasConcept C179428855 @default.
- W2949856546 hasConcept C203332170 @default.
- W2949856546 hasConcept C205203396 @default.
- W2949856546 hasConcept C205372480 @default.
- W2949856546 hasConcept C205649164 @default.
- W2949856546 hasConcept C2908647359 @default.
- W2949856546 hasConcept C31972630 @default.
- W2949856546 hasConcept C33923547 @default.
- W2949856546 hasConcept C33954974 @default.
- W2949856546 hasConcept C39432304 @default.
- W2949856546 hasConcept C41008148 @default.
- W2949856546 hasConcept C62520636 @default.
- W2949856546 hasConcept C62649853 @default.
- W2949856546 hasConcept C81692654 @default.
- W2949856546 hasConceptScore W2949856546C104114177 @default.