Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949863907> ?p ?o ?g. }
- W2949863907 endingPage "1129" @default.
- W2949863907 startingPage "1105" @default.
- W2949863907 abstract "Abstract. To better understand the effects of wildfires on air quality and climate, it is important to assess the occurrence of chromophoric compounds in smoke and characterize their optical properties. This study explores the molecular composition of light-absorbing organic aerosol, or brown carbon (BrC), sampled at the Missoula Fire Sciences laboratory as a part of the FIREX Fall 2016 lab intensive. A total of 12 biomass fuels from different plant types were tested, including gymnosperm (coniferous) and angiosperm (flowering) plants and different ecosystem components such as duff, litter, and canopy. Emitted biomass burning organic aerosol (BBOA) particles were collected onto Teflon filters and analyzed offline using high-performance liquid chromatography coupled to a photodiode array spectrophotometer and a high-resolution mass spectrometer (HPLC–PDA–HRMS). Separated BrC chromophores were classified by their retention times, absorption spectra, integrated absorbance in the near-UV and visible spectral range (300–700 nm), and chemical formulas from the accurate m∕z measurements. BrC chromophores were grouped into the following classes and subclasses: lignin-derived products, which include lignin pyrolysis products; distillation products, which include coumarins and flavonoids; nitroaromatics; and polycyclic aromatic hydrocarbons (PAHs). The observed classes and subclasses were common across most fuel types, although specific BrC chromophores varied based on plant type (gymnosperm or angiosperm) and ecosystem component(s) burned. To study the stability of the observed BrC compounds with respect to photodegradation, BBOA particle samples were irradiated directly on filters with near UV (300–400 nm) radiation, followed by extraction and HPLC–PDA–HRMS analysis. Lifetimes of individual BrC chromophores depended on the fuel type and the corresponding combustion condition. Lignin-derived and flavonoid classes of BrC generally had the longest lifetimes with respect to UV photodegradation. Moreover, lifetimes for the same type of BrC chromophores varied depending on biomass fuel and combustion conditions. While individual BrC chromophores disappeared on a timescale of several days, the overall light absorption by the sample persisted longer, presumably because the condensed-phase photochemical processes converted one set of chromophores into another without complete photobleaching or from undetected BrC chromophores that photobleached more slowly. To model the effect of BrC on climate, it is important to understand the change in the overall absorption coefficient with time. We measured the equivalent atmospheric lifetimes of the overall BrC absorption coefficient, which ranged from 10 to 41 d, with subalpine fir having the shortest lifetime and conifer canopies, i.e., juniper, having the longest lifetime. BrC emitted from biomass fuel loads encompassing multiple ecosystem components (litter, shrub, canopy) had absorption lifetimes on the lower end of the range. These results indicate that photobleaching of BBOA by condensed-phase photochemistry is relatively slow. Competing chemical aging mechanisms, such as heterogeneous oxidation by OH, may be more important for controlling the rate of BrC photobleaching in BBOA." @default.
- W2949863907 created "2019-06-27" @default.
- W2949863907 creator A5010313313 @default.
- W2949863907 creator A5031607836 @default.
- W2949863907 creator A5032668969 @default.
- W2949863907 creator A5050186011 @default.
- W2949863907 creator A5051238637 @default.
- W2949863907 creator A5067202043 @default.
- W2949863907 creator A5067234032 @default.
- W2949863907 creator A5069904746 @default.
- W2949863907 date "2020-01-28" @default.
- W2949863907 modified "2023-10-18" @default.
- W2949863907 title "Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass burning organic aerosol" @default.
- W2949863907 cites W1859320757 @default.
- W2949863907 cites W1862901760 @default.
- W2949863907 cites W1881210903 @default.
- W2949863907 cites W1964252479 @default.
- W2949863907 cites W1965663305 @default.
- W2949863907 cites W1975959083 @default.
- W2949863907 cites W1983580611 @default.
- W2949863907 cites W1985399410 @default.
- W2949863907 cites W1988063372 @default.
- W2949863907 cites W1989299822 @default.
- W2949863907 cites W1995565214 @default.
- W2949863907 cites W2011680286 @default.
- W2949863907 cites W2025100133 @default.
- W2949863907 cites W2035538685 @default.
- W2949863907 cites W2036025639 @default.
- W2949863907 cites W2039020884 @default.
- W2949863907 cites W2046679755 @default.
- W2949863907 cites W2051545938 @default.
- W2949863907 cites W2056386770 @default.
- W2949863907 cites W2059434758 @default.
- W2949863907 cites W2060117860 @default.
- W2949863907 cites W2062531915 @default.
- W2949863907 cites W2062681419 @default.
- W2949863907 cites W2062684589 @default.
- W2949863907 cites W2062909384 @default.
- W2949863907 cites W2065449930 @default.
- W2949863907 cites W2066828854 @default.
- W2949863907 cites W2070134034 @default.
- W2949863907 cites W2071612908 @default.
- W2949863907 cites W2080320130 @default.
- W2949863907 cites W2082142840 @default.
- W2949863907 cites W2082767036 @default.
- W2949863907 cites W2088710710 @default.
- W2949863907 cites W2096146004 @default.
- W2949863907 cites W2098068927 @default.
- W2949863907 cites W2106161186 @default.
- W2949863907 cites W2106811624 @default.
- W2949863907 cites W2108000530 @default.
- W2949863907 cites W2116952709 @default.
- W2949863907 cites W2123126808 @default.
- W2949863907 cites W2129899383 @default.
- W2949863907 cites W2142380122 @default.
- W2949863907 cites W2172494291 @default.
- W2949863907 cites W2176796503 @default.
- W2949863907 cites W2189916503 @default.
- W2949863907 cites W2220992427 @default.
- W2949863907 cites W2319658203 @default.
- W2949863907 cites W2329080388 @default.
- W2949863907 cites W2519961019 @default.
- W2949863907 cites W2532403770 @default.
- W2949863907 cites W2552131965 @default.
- W2949863907 cites W2586996476 @default.
- W2949863907 cites W2587842698 @default.
- W2949863907 cites W2603162833 @default.
- W2949863907 cites W2604212085 @default.
- W2949863907 cites W2622615175 @default.
- W2949863907 cites W2645284662 @default.
- W2949863907 cites W26919771 @default.
- W2949863907 cites W2741808367 @default.
- W2949863907 cites W2750515758 @default.
- W2949863907 cites W2751922867 @default.
- W2949863907 cites W2758570457 @default.
- W2949863907 cites W2763775926 @default.
- W2949863907 cites W2783619428 @default.
- W2949863907 cites W2786684532 @default.
- W2949863907 cites W2788443447 @default.
- W2949863907 cites W2803270849 @default.
- W2949863907 cites W2888703340 @default.
- W2949863907 cites W2889257447 @default.
- W2949863907 cites W2889449882 @default.
- W2949863907 cites W2896337990 @default.
- W2949863907 cites W2896424157 @default.
- W2949863907 cites W2901247368 @default.
- W2949863907 cites W2904320946 @default.
- W2949863907 cites W2907367605 @default.
- W2949863907 cites W2947892774 @default.
- W2949863907 cites W56737107 @default.
- W2949863907 cites W2067242540 @default.
- W2949863907 cites W2082067786 @default.
- W2949863907 doi "https://doi.org/10.5194/acp-20-1105-2020" @default.
- W2949863907 hasPublicationYear "2020" @default.
- W2949863907 type Work @default.
- W2949863907 sameAs 2949863907 @default.
- W2949863907 citedByCount "103" @default.
- W2949863907 countsByYear W29498639072020 @default.