Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949866075> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2949866075 endingPage "47" @default.
- W2949866075 startingPage "39" @default.
- W2949866075 abstract "Hydrogen energy is able to solve the problem of the dependence of modern industries on fossil fuels and significantly reduce the amount of harmful emissions. One of the ways to produce hydrogen is high-temperature water-steam electrolysis. Increasing the temperature of the steam involved in electrolysis makes the process more efficient. The key problem is the use of a reliable heat energy source capable of reaching high temperatures. High-temperature gas-cooled reactors with a gaseous coolant and a graphite moderator provide a solution to the problem of heating the electrolyte. Part of the heat energy is used for producing electrical energy required for electrolysis. Modern electrolyzers built as arrays of tubular or planar electrolytic cells with a nuclear energy source make it possible to produce hydrogen by decomposing water molecules, and the working temperature control leads to a decrease in the Nernst potential. The operation of such facilities is complicated by the need to determine the optimal parameters of the electrolysis cell, the steam flow rate, and the operating current density. To reduce the costs associated with the process optimization, it is proposed to use a low-temperature electrolysis system controlled by a spiking neural network. The results confirm the effectiveness of intelligent technologies that implement adaptive control of hybrid modeling processes in order to organize the most feasible hydrogen production in a specific process, the parameters of which can be modified depending on the specific use of the reactor thermal energy. In addition, the results of the study confirm the feasibility of using a combined functional structure made on the basis of spiking neurons to correct the parameters of the developed electrolytic system. The proposed simulation strategy can significantly reduce the consumption of computational resources in comparison with models based only on neural network prediction methods." @default.
- W2949866075 created "2019-06-27" @default.
- W2949866075 creator A5072993593 @default.
- W2949866075 creator A5077835893 @default.
- W2949866075 date "2019-06-21" @default.
- W2949866075 modified "2023-10-01" @default.
- W2949866075 title "Application of spiking neural networks for modelling the process of high-temperature hydrogen production in systems with gas-cooled reactors *" @default.
- W2949866075 cites W1029594918 @default.
- W2949866075 cites W1489793438 @default.
- W2949866075 cites W182375345 @default.
- W2949866075 cites W2483020306 @default.
- W2949866075 cites W4238614602 @default.
- W2949866075 cites W615478269 @default.
- W2949866075 doi "https://doi.org/10.3897/nucet.5.36474" @default.
- W2949866075 hasPublicationYear "2019" @default.
- W2949866075 type Work @default.
- W2949866075 sameAs 2949866075 @default.
- W2949866075 citedByCount "0" @default.
- W2949866075 crossrefType "journal-article" @default.
- W2949866075 hasAuthorship W2949866075A5072993593 @default.
- W2949866075 hasAuthorship W2949866075A5077835893 @default.
- W2949866075 hasBestOaLocation W29498660751 @default.
- W2949866075 hasConcept C100729193 @default.
- W2949866075 hasConcept C107861326 @default.
- W2949866075 hasConcept C114506045 @default.
- W2949866075 hasConcept C116915560 @default.
- W2949866075 hasConcept C121332964 @default.
- W2949866075 hasConcept C127413603 @default.
- W2949866075 hasConcept C147789679 @default.
- W2949866075 hasConcept C163127949 @default.
- W2949866075 hasConcept C17168322 @default.
- W2949866075 hasConcept C17525397 @default.
- W2949866075 hasConcept C178790620 @default.
- W2949866075 hasConcept C185592680 @default.
- W2949866075 hasConcept C202189072 @default.
- W2949866075 hasConcept C21880701 @default.
- W2949866075 hasConcept C48256821 @default.
- W2949866075 hasConcept C512968161 @default.
- W2949866075 hasConcept C68801617 @default.
- W2949866075 hasConcept C70635819 @default.
- W2949866075 hasConcept C7453809 @default.
- W2949866075 hasConcept C97355855 @default.
- W2949866075 hasConceptScore W2949866075C100729193 @default.
- W2949866075 hasConceptScore W2949866075C107861326 @default.
- W2949866075 hasConceptScore W2949866075C114506045 @default.
- W2949866075 hasConceptScore W2949866075C116915560 @default.
- W2949866075 hasConceptScore W2949866075C121332964 @default.
- W2949866075 hasConceptScore W2949866075C127413603 @default.
- W2949866075 hasConceptScore W2949866075C147789679 @default.
- W2949866075 hasConceptScore W2949866075C163127949 @default.
- W2949866075 hasConceptScore W2949866075C17168322 @default.
- W2949866075 hasConceptScore W2949866075C17525397 @default.
- W2949866075 hasConceptScore W2949866075C178790620 @default.
- W2949866075 hasConceptScore W2949866075C185592680 @default.
- W2949866075 hasConceptScore W2949866075C202189072 @default.
- W2949866075 hasConceptScore W2949866075C21880701 @default.
- W2949866075 hasConceptScore W2949866075C48256821 @default.
- W2949866075 hasConceptScore W2949866075C512968161 @default.
- W2949866075 hasConceptScore W2949866075C68801617 @default.
- W2949866075 hasConceptScore W2949866075C70635819 @default.
- W2949866075 hasConceptScore W2949866075C7453809 @default.
- W2949866075 hasConceptScore W2949866075C97355855 @default.
- W2949866075 hasIssue "2" @default.
- W2949866075 hasLocation W29498660751 @default.
- W2949866075 hasLocation W29498660752 @default.
- W2949866075 hasOpenAccess W2949866075 @default.
- W2949866075 hasPrimaryLocation W29498660751 @default.
- W2949866075 hasRelatedWork W1994028888 @default.
- W2949866075 hasRelatedWork W2021012568 @default.
- W2949866075 hasRelatedWork W2037246752 @default.
- W2949866075 hasRelatedWork W2038141659 @default.
- W2949866075 hasRelatedWork W2085687043 @default.
- W2949866075 hasRelatedWork W2230825715 @default.
- W2949866075 hasRelatedWork W2254740139 @default.
- W2949866075 hasRelatedWork W2392307557 @default.
- W2949866075 hasRelatedWork W3107614242 @default.
- W2949866075 hasRelatedWork W3167030177 @default.
- W2949866075 hasVolume "5" @default.
- W2949866075 isParatext "false" @default.
- W2949866075 isRetracted "false" @default.
- W2949866075 magId "2949866075" @default.
- W2949866075 workType "article" @default.