Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949866910> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2949866910 abstract "The field of image denoising is currently dominated by discriminative deep learning methods that are trained on pairs of noisy input and clean target images. Recently it has been shown that such methods can also be trained without clean targets. Instead, independent pairs of noisy images can be used, in an approach known as Noise2Noise (N2N). Here, we introduce Noise2Void (N2V), a training scheme that takes this idea one step further. It does not require noisy image pairs, nor clean target images. Consequently, N2V allows us to train directly on the body of data to be denoised and can therefore be applied when other methods cannot. Especially interesting is the application to biomedical image data, where the acquisition of training targets, clean or noisy, is frequently not possible. We compare the performance of N2V to approaches that have either clean target images and/or noisy image pairs available. Intuitively, N2V cannot be expected to outperform methods that have more information available during training. Still, we observe that the denoising performance of Noise2Void drops in moderation and compares favorably to training-free denoising methods." @default.
- W2949866910 created "2019-06-27" @default.
- W2949866910 creator A5031489442 @default.
- W2949866910 creator A5045834690 @default.
- W2949866910 creator A5073866871 @default.
- W2949866910 date "2018-11-27" @default.
- W2949866910 modified "2023-09-27" @default.
- W2949866910 title "Noise2Void - Learning Denoising from Single Noisy Images" @default.
- W2949866910 cites W1901129140 @default.
- W2949866910 cites W2056370875 @default.
- W2949866910 cites W2062811295 @default.
- W2949866910 cites W2090772323 @default.
- W2949866910 cites W2097073572 @default.
- W2949866910 cites W2098477387 @default.
- W2949866910 cites W2130184048 @default.
- W2949866910 cites W2131686571 @default.
- W2949866910 cites W2508457857 @default.
- W2949866910 cites W2520164769 @default.
- W2949866910 cites W2743529218 @default.
- W2949866910 cites W2758694956 @default.
- W2949866910 cites W2795760368 @default.
- W2949866910 cites W2798278116 @default.
- W2949866910 cites W2949117887 @default.
- W2949866910 cites W2949650786 @default.
- W2949866910 cites W2949725501 @default.
- W2949866910 cites W2952632681 @default.
- W2949866910 cites W2953318193 @default.
- W2949866910 cites W2964204553 @default.
- W2949866910 hasPublicationYear "2018" @default.
- W2949866910 type Work @default.
- W2949866910 sameAs 2949866910 @default.
- W2949866910 citedByCount "7" @default.
- W2949866910 countsByYear W29498669102019 @default.
- W2949866910 countsByYear W29498669102020 @default.
- W2949866910 countsByYear W29498669102021 @default.
- W2949866910 crossrefType "posted-content" @default.
- W2949866910 hasAuthorship W2949866910A5031489442 @default.
- W2949866910 hasAuthorship W2949866910A5045834690 @default.
- W2949866910 hasAuthorship W2949866910A5073866871 @default.
- W2949866910 hasConcept C115961682 @default.
- W2949866910 hasConcept C153180895 @default.
- W2949866910 hasConcept C154945302 @default.
- W2949866910 hasConcept C163294075 @default.
- W2949866910 hasConcept C202444582 @default.
- W2949866910 hasConcept C2983327147 @default.
- W2949866910 hasConcept C31972630 @default.
- W2949866910 hasConcept C33923547 @default.
- W2949866910 hasConcept C41008148 @default.
- W2949866910 hasConcept C9652623 @default.
- W2949866910 hasConcept C97931131 @default.
- W2949866910 hasConcept C99498987 @default.
- W2949866910 hasConceptScore W2949866910C115961682 @default.
- W2949866910 hasConceptScore W2949866910C153180895 @default.
- W2949866910 hasConceptScore W2949866910C154945302 @default.
- W2949866910 hasConceptScore W2949866910C163294075 @default.
- W2949866910 hasConceptScore W2949866910C202444582 @default.
- W2949866910 hasConceptScore W2949866910C2983327147 @default.
- W2949866910 hasConceptScore W2949866910C31972630 @default.
- W2949866910 hasConceptScore W2949866910C33923547 @default.
- W2949866910 hasConceptScore W2949866910C41008148 @default.
- W2949866910 hasConceptScore W2949866910C9652623 @default.
- W2949866910 hasConceptScore W2949866910C97931131 @default.
- W2949866910 hasConceptScore W2949866910C99498987 @default.
- W2949866910 hasLocation W29498669101 @default.
- W2949866910 hasOpenAccess W2949866910 @default.
- W2949866910 hasPrimaryLocation W29498669101 @default.
- W2949866910 hasRelatedWork W2539316214 @default.
- W2949866910 hasRelatedWork W2613184245 @default.
- W2949866910 hasRelatedWork W2796954771 @default.
- W2949866910 hasRelatedWork W2798278116 @default.
- W2949866910 hasRelatedWork W2808548136 @default.
- W2949866910 hasRelatedWork W2832157980 @default.
- W2949866910 hasRelatedWork W2902857081 @default.
- W2949866910 hasRelatedWork W2951497578 @default.
- W2949866910 hasRelatedWork W2964204553 @default.
- W2949866910 hasRelatedWork W2964677858 @default.
- W2949866910 hasRelatedWork W2997053073 @default.
- W2949866910 hasRelatedWork W3007757852 @default.
- W2949866910 hasRelatedWork W3040288839 @default.
- W2949866910 hasRelatedWork W3049273378 @default.
- W2949866910 hasRelatedWork W3082495639 @default.
- W2949866910 hasRelatedWork W3088797428 @default.
- W2949866910 hasRelatedWork W3099334623 @default.
- W2949866910 hasRelatedWork W3103868430 @default.
- W2949866910 hasRelatedWork W3153623182 @default.
- W2949866910 hasRelatedWork W3164387237 @default.
- W2949866910 isParatext "false" @default.
- W2949866910 isRetracted "false" @default.
- W2949866910 magId "2949866910" @default.
- W2949866910 workType "article" @default.