Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949888973> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2949888973 endingPage "73" @default.
- W2949888973 startingPage "63" @default.
- W2949888973 abstract "Sleep staging is the first step for sleep research and sleep disorder diagnosis. The present study proposes an automatic sleep staging model, named ResSleepNet, using raw single-channel EEG signals. Most of the existing studies utilize hand-engineered features to identify sleep stages. These methods may ignore some important features of the signals, and then influence the effect of sleep stage classification. Instead of hand-engineering features, we combine feature extraction and classification into an algorithm based on residual network and bidirectional long short-term memory network. In the proposed method, we develop a 22-layer deep network to automatically learn features from the raw single-channel EEG and classify sleep stages. Residual network can learn time-invariant features, and bidirectional long short-term memory can add learned transition rules among sleep stages to the network. The model ResSleepNet is tested on the Sleep-EDF database. We perform 10 experiments and get average overall accuracy of 90.82% and 91.75% for 6-state and 5-state classification of sleep stages. Experimental results show the performance of our model is better than the state-of-the-art sleep staging methods, and it yields high detection accuracy for identifying sleep stage S1 and REM. In addition, our model is also suitable for extracting features from other signals (EOG, EMG) for sleep stage classification." @default.
- W2949888973 created "2019-06-27" @default.
- W2949888973 creator A5020583701 @default.
- W2949888973 creator A5057832613 @default.
- W2949888973 creator A5083181758 @default.
- W2949888973 date "2019-01-01" @default.
- W2949888973 modified "2023-10-16" @default.
- W2949888973 title "Automatic Sleep Staging Based on Deep Neural Network Using Single Channel EEG" @default.
- W2949888973 cites W1616126598 @default.
- W2949888973 cites W1820534876 @default.
- W2949888973 cites W1996369579 @default.
- W2949888973 cites W2015365430 @default.
- W2949888973 cites W2023297898 @default.
- W2949888973 cites W2035998833 @default.
- W2949888973 cites W2088478798 @default.
- W2949888973 cites W2097117768 @default.
- W2949888973 cites W2102376611 @default.
- W2949888973 cites W2162800060 @default.
- W2949888973 cites W2180889008 @default.
- W2949888973 cites W2194775991 @default.
- W2949888973 cites W2285010888 @default.
- W2949888973 cites W2337818748 @default.
- W2949888973 cites W2513213398 @default.
- W2949888973 cites W2604096629 @default.
- W2949888973 cites W2608008283 @default.
- W2949888973 cites W2612047884 @default.
- W2949888973 cites W2964065019 @default.
- W2949888973 doi "https://doi.org/10.1007/978-3-030-21451-7_6" @default.
- W2949888973 hasPublicationYear "2019" @default.
- W2949888973 type Work @default.
- W2949888973 sameAs 2949888973 @default.
- W2949888973 citedByCount "2" @default.
- W2949888973 countsByYear W29498889732021 @default.
- W2949888973 crossrefType "book-chapter" @default.
- W2949888973 hasAuthorship W2949888973A5020583701 @default.
- W2949888973 hasAuthorship W2949888973A5057832613 @default.
- W2949888973 hasAuthorship W2949888973A5083181758 @default.
- W2949888973 hasConcept C111919701 @default.
- W2949888973 hasConcept C127162648 @default.
- W2949888973 hasConcept C154945302 @default.
- W2949888973 hasConcept C15744967 @default.
- W2949888973 hasConcept C169760540 @default.
- W2949888973 hasConcept C2775841894 @default.
- W2949888973 hasConcept C28490314 @default.
- W2949888973 hasConcept C41008148 @default.
- W2949888973 hasConcept C522805319 @default.
- W2949888973 hasConcept C548259974 @default.
- W2949888973 hasConcept C71924100 @default.
- W2949888973 hasConcept C76155785 @default.
- W2949888973 hasConceptScore W2949888973C111919701 @default.
- W2949888973 hasConceptScore W2949888973C127162648 @default.
- W2949888973 hasConceptScore W2949888973C154945302 @default.
- W2949888973 hasConceptScore W2949888973C15744967 @default.
- W2949888973 hasConceptScore W2949888973C169760540 @default.
- W2949888973 hasConceptScore W2949888973C2775841894 @default.
- W2949888973 hasConceptScore W2949888973C28490314 @default.
- W2949888973 hasConceptScore W2949888973C41008148 @default.
- W2949888973 hasConceptScore W2949888973C522805319 @default.
- W2949888973 hasConceptScore W2949888973C548259974 @default.
- W2949888973 hasConceptScore W2949888973C71924100 @default.
- W2949888973 hasConceptScore W2949888973C76155785 @default.
- W2949888973 hasLocation W29498889731 @default.
- W2949888973 hasOpenAccess W2949888973 @default.
- W2949888973 hasPrimaryLocation W29498889731 @default.
- W2949888973 hasRelatedWork W1565208691 @default.
- W2949888973 hasRelatedWork W1971192340 @default.
- W2949888973 hasRelatedWork W1996630551 @default.
- W2949888973 hasRelatedWork W2071539815 @default.
- W2949888973 hasRelatedWork W2368779261 @default.
- W2949888973 hasRelatedWork W2381230604 @default.
- W2949888973 hasRelatedWork W2794438528 @default.
- W2949888973 hasRelatedWork W2802026353 @default.
- W2949888973 hasRelatedWork W2893763841 @default.
- W2949888973 hasRelatedWork W3205396342 @default.
- W2949888973 isParatext "false" @default.
- W2949888973 isRetracted "false" @default.
- W2949888973 magId "2949888973" @default.
- W2949888973 workType "book-chapter" @default.