Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950044218> ?p ?o ?g. }
- W2950044218 endingPage "e1006516" @default.
- W2950044218 startingPage "e1006516" @default.
- W2950044218 abstract "Analysis of the spatial sub-cellular distribution of proteins is of vital importance to fully understand context specific protein function. Some proteins can be found with a single location within a cell, but up to half of proteins may reside in multiple locations, can dynamically re-localise, or reside within an unknown functional compartment. These considerations lead to uncertainty in associating a protein to a single location. Currently, mass spectrometry (MS) based spatial proteomics relies on supervised machine learning algorithms to assign proteins to sub-cellular locations based on common gradient profiles. However, such methods fail to quantify uncertainty associated with sub-cellular class assignment. Here we reformulate the framework on which we perform statistical analysis. We propose a Bayesian generative classifier based on Gaussian mixture models to assign proteins probabilistically to sub-cellular niches, thus proteins have a probability distribution over sub-cellular locations, with Bayesian computation performed using the expectation-maximisation (EM) algorithm, as well as Markov-chain Monte-Carlo (MCMC). Our methodology allows proteome-wide uncertainty quantification, thus adding a further layer to the analysis of spatial proteomics. Our framework is flexible, allowing many different systems to be analysed and reveals new modelling opportunities for spatial proteomics. We find our methods perform competitively with current state-of-the art machine learning methods, whilst simultaneously providing more information. We highlight several examples where classification based on the support vector machine is unable to make any conclusions, while uncertainty quantification using our approach provides biologically intriguing results. To our knowledge this is the first Bayesian model of MS-based spatial proteomics data." @default.
- W2950044218 created "2019-06-27" @default.
- W2950044218 creator A5007256008 @default.
- W2950044218 creator A5026646873 @default.
- W2950044218 creator A5044004993 @default.
- W2950044218 creator A5058209508 @default.
- W2950044218 creator A5064560423 @default.
- W2950044218 date "2018-11-27" @default.
- W2950044218 modified "2023-10-16" @default.
- W2950044218 title "A Bayesian mixture modelling approach for spatial proteomics" @default.
- W2950044218 cites W1801655979 @default.
- W2950044218 cites W1969589458 @default.
- W2950044218 cites W1970280063 @default.
- W2950044218 cites W1973094248 @default.
- W2950044218 cites W1991024525 @default.
- W2950044218 cites W1995875735 @default.
- W2950044218 cites W2006246187 @default.
- W2950044218 cites W2008541887 @default.
- W2950044218 cites W2012626734 @default.
- W2950044218 cites W2019861313 @default.
- W2950044218 cites W2025720061 @default.
- W2950044218 cites W2028885314 @default.
- W2950044218 cites W2035618305 @default.
- W2950044218 cites W2035630698 @default.
- W2950044218 cites W2040289428 @default.
- W2950044218 cites W2041399392 @default.
- W2950044218 cites W2045748439 @default.
- W2950044218 cites W2045966063 @default.
- W2950044218 cites W2049497130 @default.
- W2950044218 cites W2049633694 @default.
- W2950044218 cites W2050897938 @default.
- W2950044218 cites W2051351981 @default.
- W2950044218 cites W2082407716 @default.
- W2950044218 cites W2082503527 @default.
- W2950044218 cites W2084809943 @default.
- W2950044218 cites W2097847369 @default.
- W2950044218 cites W2099245389 @default.
- W2950044218 cites W2106839391 @default.
- W2950044218 cites W2110065044 @default.
- W2950044218 cites W2118978333 @default.
- W2950044218 cites W2129716198 @default.
- W2950044218 cites W2139347349 @default.
- W2950044218 cites W2144675138 @default.
- W2950044218 cites W2148534890 @default.
- W2950044218 cites W2149159173 @default.
- W2950044218 cites W2149408487 @default.
- W2950044218 cites W2151808499 @default.
- W2950044218 cites W2154392018 @default.
- W2950044218 cites W2156355974 @default.
- W2950044218 cites W2160697532 @default.
- W2950044218 cites W2164740180 @default.
- W2950044218 cites W2166574880 @default.
- W2950044218 cites W2169400314 @default.
- W2950044218 cites W2235956282 @default.
- W2950044218 cites W2272852695 @default.
- W2950044218 cites W2326387016 @default.
- W2950044218 cites W2397682226 @default.
- W2950044218 cites W2419532700 @default.
- W2950044218 cites W2518837957 @default.
- W2950044218 cites W2564065264 @default.
- W2950044218 cites W2594807826 @default.
- W2950044218 cites W2611725166 @default.
- W2950044218 cites W2785331269 @default.
- W2950044218 cites W2949687922 @default.
- W2950044218 cites W2952790548 @default.
- W2950044218 cites W3103194895 @default.
- W2950044218 cites W4213009331 @default.
- W2950044218 cites W4235157788 @default.
- W2950044218 cites W4247690662 @default.
- W2950044218 doi "https://doi.org/10.1371/journal.pcbi.1006516" @default.
- W2950044218 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6258510" @default.
- W2950044218 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30481170" @default.
- W2950044218 hasPublicationYear "2018" @default.
- W2950044218 type Work @default.
- W2950044218 sameAs 2950044218 @default.
- W2950044218 citedByCount "50" @default.
- W2950044218 countsByYear W29500442182019 @default.
- W2950044218 countsByYear W29500442182020 @default.
- W2950044218 countsByYear W29500442182021 @default.
- W2950044218 countsByYear W29500442182022 @default.
- W2950044218 countsByYear W29500442182023 @default.
- W2950044218 crossrefType "journal-article" @default.
- W2950044218 hasAuthorship W2950044218A5007256008 @default.
- W2950044218 hasAuthorship W2950044218A5026646873 @default.
- W2950044218 hasAuthorship W2950044218A5044004993 @default.
- W2950044218 hasAuthorship W2950044218A5058209508 @default.
- W2950044218 hasAuthorship W2950044218A5064560423 @default.
- W2950044218 hasBestOaLocation W29500442181 @default.
- W2950044218 hasConcept C104317684 @default.
- W2950044218 hasConcept C104397665 @default.
- W2950044218 hasConcept C107673813 @default.
- W2950044218 hasConcept C111350023 @default.
- W2950044218 hasConcept C119857082 @default.
- W2950044218 hasConcept C12267149 @default.
- W2950044218 hasConcept C151730666 @default.
- W2950044218 hasConcept C154945302 @default.
- W2950044218 hasConcept C2779343474 @default.
- W2950044218 hasConcept C41008148 @default.