Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950102235> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2950102235 abstract "Big Data streams are being generated in a faster, bigger, and more commonplace. In this scenario, Hoeffding Trees are an established method for classification. Several extensions exist, including high-performing ensemble setups such as online and leveraging bagging. Also, $k$-nearest neighbors is a popular choice, with most extensions dealing with the inherent performance limitations over a potentially-infinite stream. At the same time, gradient descent methods are becoming increasingly popular, owing in part to the successes of deep learning. Although deep neural networks can learn incrementally, they have so far proved too sensitive to hyper-parameter options and initial conditions to be considered an effective `off-the-shelf' data-streams solution. In this work, we look at combinations of Hoeffding-trees, nearest neighbour, and gradient descent methods with a streaming preprocessing approach in the form of a random feature functions filter for additional predictive power. We further extend the investigation to implementing methods on GPUs, which we test on some large real-world datasets, and show the benefits of using GPUs for data-stream learning due to their high scalability. Our empirical evaluation yields positive results for the novel approaches that we experiment with, highlighting important issues, and shed light on promising future directions in approaches to data-stream classification." @default.
- W2950102235 created "2019-06-27" @default.
- W2950102235 creator A5033973791 @default.
- W2950102235 creator A5039832928 @default.
- W2950102235 creator A5055668668 @default.
- W2950102235 creator A5080970505 @default.
- W2950102235 date "2015-11-03" @default.
- W2950102235 modified "2023-10-01" @default.
- W2950102235 title "Data Stream Classification using Random Feature Functions and Novel Method Combinations" @default.
- W2950102235 hasPublicationYear "2015" @default.
- W2950102235 type Work @default.
- W2950102235 sameAs 2950102235 @default.
- W2950102235 citedByCount "0" @default.
- W2950102235 crossrefType "posted-content" @default.
- W2950102235 hasAuthorship W2950102235A5033973791 @default.
- W2950102235 hasAuthorship W2950102235A5039832928 @default.
- W2950102235 hasAuthorship W2950102235A5055668668 @default.
- W2950102235 hasAuthorship W2950102235A5080970505 @default.
- W2950102235 hasConcept C106131492 @default.
- W2950102235 hasConcept C108583219 @default.
- W2950102235 hasConcept C119857082 @default.
- W2950102235 hasConcept C124101348 @default.
- W2950102235 hasConcept C138885662 @default.
- W2950102235 hasConcept C154945302 @default.
- W2950102235 hasConcept C169258074 @default.
- W2950102235 hasConcept C206688291 @default.
- W2950102235 hasConcept C2776401178 @default.
- W2950102235 hasConcept C2778484313 @default.
- W2950102235 hasConcept C31972630 @default.
- W2950102235 hasConcept C34736171 @default.
- W2950102235 hasConcept C41008148 @default.
- W2950102235 hasConcept C41895202 @default.
- W2950102235 hasConcept C48044578 @default.
- W2950102235 hasConcept C50644808 @default.
- W2950102235 hasConcept C60777511 @default.
- W2950102235 hasConcept C75684735 @default.
- W2950102235 hasConcept C76155785 @default.
- W2950102235 hasConcept C77088390 @default.
- W2950102235 hasConcept C89198739 @default.
- W2950102235 hasConceptScore W2950102235C106131492 @default.
- W2950102235 hasConceptScore W2950102235C108583219 @default.
- W2950102235 hasConceptScore W2950102235C119857082 @default.
- W2950102235 hasConceptScore W2950102235C124101348 @default.
- W2950102235 hasConceptScore W2950102235C138885662 @default.
- W2950102235 hasConceptScore W2950102235C154945302 @default.
- W2950102235 hasConceptScore W2950102235C169258074 @default.
- W2950102235 hasConceptScore W2950102235C206688291 @default.
- W2950102235 hasConceptScore W2950102235C2776401178 @default.
- W2950102235 hasConceptScore W2950102235C2778484313 @default.
- W2950102235 hasConceptScore W2950102235C31972630 @default.
- W2950102235 hasConceptScore W2950102235C34736171 @default.
- W2950102235 hasConceptScore W2950102235C41008148 @default.
- W2950102235 hasConceptScore W2950102235C41895202 @default.
- W2950102235 hasConceptScore W2950102235C48044578 @default.
- W2950102235 hasConceptScore W2950102235C50644808 @default.
- W2950102235 hasConceptScore W2950102235C60777511 @default.
- W2950102235 hasConceptScore W2950102235C75684735 @default.
- W2950102235 hasConceptScore W2950102235C76155785 @default.
- W2950102235 hasConceptScore W2950102235C77088390 @default.
- W2950102235 hasConceptScore W2950102235C89198739 @default.
- W2950102235 hasOpenAccess W2950102235 @default.
- W2950102235 hasRelatedWork W102538631 @default.
- W2950102235 hasRelatedWork W1883147838 @default.
- W2950102235 hasRelatedWork W1968160919 @default.
- W2950102235 hasRelatedWork W2070845802 @default.
- W2950102235 hasRelatedWork W2189127686 @default.
- W2950102235 hasRelatedWork W2214080290 @default.
- W2950102235 hasRelatedWork W2414974126 @default.
- W2950102235 hasRelatedWork W2520932862 @default.
- W2950102235 hasRelatedWork W2552868416 @default.
- W2950102235 hasRelatedWork W2884885372 @default.
- W2950102235 hasRelatedWork W2887720202 @default.
- W2950102235 hasRelatedWork W2892145319 @default.
- W2950102235 hasRelatedWork W2896153502 @default.
- W2950102235 hasRelatedWork W2965000643 @default.
- W2950102235 hasRelatedWork W3039342842 @default.
- W2950102235 hasRelatedWork W3137012606 @default.
- W2950102235 hasRelatedWork W3144406059 @default.
- W2950102235 hasRelatedWork W3207280834 @default.
- W2950102235 hasRelatedWork W53053957 @default.
- W2950102235 hasRelatedWork W783597527 @default.
- W2950102235 isParatext "false" @default.
- W2950102235 isRetracted "false" @default.
- W2950102235 magId "2950102235" @default.
- W2950102235 workType "article" @default.