Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950102488> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2950102488 endingPage "e13803" @default.
- W2950102488 startingPage "e13803" @default.
- W2950102488 abstract "Social media use is now ubiquitous, but the growth in social media communications has also made it a convenient digital platform for drug dealers selling controlled substances, opioids, and other illicit drugs. Previous studies and news investigations have reported the use of popular social media platforms as conduits for opioid sales. This study uses deep learning to detect illicit drug dealing on the image and video sharing platform Instagram.The aim of this study was to develop and evaluate a machine learning approach to detect Instagram posts related to illegal internet drug dealing.In this paper, we describe an approach to detect drug dealers by using a deep learning model on Instagram. We collected Instagram posts using a Web scraper between July 2018 and October 2018 and then compared our deep learning model against 3 different machine learning models (eg, random forest, decision tree, and support vector machine) to assess the performance and accuracy of the model. For our deep learning model, we used the long short-term memory unit in the recurrent neural network to learn the pattern of the text of drug dealing posts. We also manually annotated all posts collected to evaluate our model performance and to characterize drug selling conversations.From the 12,857 posts we collected, we detected 1228 drug dealer posts comprising 267 unique users. We used cross-validation to evaluate the 4 models, with our deep learning model reaching 95% on F1 score and performing better than the other 3 models. We also found that by removing the hashtags in the text, the model had better performance. Detected posts contained hashtags related to several drugs, including the controlled substance Xanax (1078/1228, 87.78%), oxycodone/OxyContin (321/1228, 26.14%), and illicit drugs lysergic acid diethylamide (213/1228, 17.34%) and 3,4-methylenedioxy-methamphetamine (94/1228, 7.65%). We also observed the use of communication applications for suspected drug trading through user comments.Our approach using a combination of Web scraping and deep learning was able to detect illegal online drug sellers on Instagram, with high accuracy. Despite increased scrutiny by regulators and policymakers, the Instagram platform continues to host posts from drug dealers, in violation of federal law. Further action needs to be taken to ensure the safety of social media communities and help put an end to this illicit digital channel of sourcing." @default.
- W2950102488 created "2019-06-27" @default.
- W2950102488 creator A5022424087 @default.
- W2950102488 creator A5036381691 @default.
- W2950102488 creator A5046725740 @default.
- W2950102488 creator A5054205831 @default.
- W2950102488 date "2019-06-15" @default.
- W2950102488 modified "2023-10-03" @default.
- W2950102488 title "A Machine Learning Approach for the Detection and Characterization of Illicit Drug Dealers on Instagram: Model Evaluation Study" @default.
- W2950102488 cites W1897240248 @default.
- W2950102488 cites W1969521705 @default.
- W2950102488 cites W1975587682 @default.
- W2950102488 cites W1981087627 @default.
- W2950102488 cites W2013208127 @default.
- W2950102488 cites W2033245860 @default.
- W2950102488 cites W2041400110 @default.
- W2950102488 cites W2086869155 @default.
- W2950102488 cites W2132083787 @default.
- W2950102488 cites W2140494000 @default.
- W2950102488 cites W2151595407 @default.
- W2950102488 cites W2209302491 @default.
- W2950102488 cites W2289450079 @default.
- W2950102488 cites W2369596206 @default.
- W2950102488 cites W2411986225 @default.
- W2950102488 cites W2755891984 @default.
- W2950102488 cites W2756102459 @default.
- W2950102488 cites W2765494774 @default.
- W2950102488 cites W2766959695 @default.
- W2950102488 cites W2801060237 @default.
- W2950102488 cites W2890036332 @default.
- W2950102488 cites W2911964244 @default.
- W2950102488 cites W2955854688 @default.
- W2950102488 cites W4236137412 @default.
- W2950102488 doi "https://doi.org/10.2196/13803" @default.
- W2950102488 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6598421" @default.
- W2950102488 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31199298" @default.
- W2950102488 hasPublicationYear "2019" @default.
- W2950102488 type Work @default.
- W2950102488 sameAs 2950102488 @default.
- W2950102488 citedByCount "55" @default.
- W2950102488 countsByYear W29501024882019 @default.
- W2950102488 countsByYear W29501024882020 @default.
- W2950102488 countsByYear W29501024882021 @default.
- W2950102488 countsByYear W29501024882022 @default.
- W2950102488 countsByYear W29501024882023 @default.
- W2950102488 crossrefType "journal-article" @default.
- W2950102488 hasAuthorship W2950102488A5022424087 @default.
- W2950102488 hasAuthorship W2950102488A5036381691 @default.
- W2950102488 hasAuthorship W2950102488A5046725740 @default.
- W2950102488 hasAuthorship W2950102488A5054205831 @default.
- W2950102488 hasBestOaLocation W29501024881 @default.
- W2950102488 hasConcept C108583219 @default.
- W2950102488 hasConcept C110875604 @default.
- W2950102488 hasConcept C119857082 @default.
- W2950102488 hasConcept C136764020 @default.
- W2950102488 hasConcept C154945302 @default.
- W2950102488 hasConcept C169258074 @default.
- W2950102488 hasConcept C41008148 @default.
- W2950102488 hasConcept C518677369 @default.
- W2950102488 hasConcept C84525736 @default.
- W2950102488 hasConceptScore W2950102488C108583219 @default.
- W2950102488 hasConceptScore W2950102488C110875604 @default.
- W2950102488 hasConceptScore W2950102488C119857082 @default.
- W2950102488 hasConceptScore W2950102488C136764020 @default.
- W2950102488 hasConceptScore W2950102488C154945302 @default.
- W2950102488 hasConceptScore W2950102488C169258074 @default.
- W2950102488 hasConceptScore W2950102488C41008148 @default.
- W2950102488 hasConceptScore W2950102488C518677369 @default.
- W2950102488 hasConceptScore W2950102488C84525736 @default.
- W2950102488 hasIssue "6" @default.
- W2950102488 hasLocation W29501024881 @default.
- W2950102488 hasLocation W29501024882 @default.
- W2950102488 hasLocation W29501024883 @default.
- W2950102488 hasLocation W29501024884 @default.
- W2950102488 hasOpenAccess W2950102488 @default.
- W2950102488 hasPrimaryLocation W29501024881 @default.
- W2950102488 hasRelatedWork W2748952813 @default.
- W2950102488 hasRelatedWork W2968586400 @default.
- W2950102488 hasRelatedWork W3211546796 @default.
- W2950102488 hasRelatedWork W4223564025 @default.
- W2950102488 hasRelatedWork W4223943233 @default.
- W2950102488 hasRelatedWork W4280583453 @default.
- W2950102488 hasRelatedWork W4281616679 @default.
- W2950102488 hasRelatedWork W4308191010 @default.
- W2950102488 hasRelatedWork W4318350883 @default.
- W2950102488 hasRelatedWork W4380075502 @default.
- W2950102488 hasVolume "21" @default.
- W2950102488 isParatext "false" @default.
- W2950102488 isRetracted "false" @default.
- W2950102488 magId "2950102488" @default.
- W2950102488 workType "article" @default.