Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950147139> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2950147139 abstract "We study the time complexity of induced subgraph isomorphism problems where the pattern graph is fixed. The earliest known example of an improvement over trivial algorithms is by Itai and Rodeh (1978) who sped up triangle detection in graphs using fast matrix multiplication. This algorithm was generalized by Nesetřil and Poljak (1985) to speed up detection of k-cliques. Improved algorithms are known for certain small-sized patterns. For example, a linear-time algorithm is known for detecting length-4 paths. In this paper, we give the first pattern detection algorithm that improves upon Nesetřil and Poljak's algorithm for arbitrarily large pattern graphs (not cliques). The algorithm is obtained by reducing the induced subgraph isomorphism problem to the problem of detecting multilinear terms in constant-degree polynomials. We show that the same technique can be used to reduce the induced subgraph isomorphism problem of many pattern graphs to constructing arithmetic circuits computing homomorphism polynomials of these pattern graphs. Using this, we obtain faster combinatorial algorithms (algorithms that do not use fast matrix multiplication) for k-paths and k-cycles. We also obtain faster algorithms for 5-paths and 5-cycles that match the runtime for triangle detection. We show that these algorithms are expressible using polynomial families that we call graph pattern polynomial families. We then define a notion of reduction among these polynomials that allows us to compare the complexity of various pattern detection problems within this framework. For example, we show that the induced subgraph isomorphism polynomial for any pattern that contains a k-clique is harder than the induced subgraph isomorphism polynomial for k-clique. An analogue of this theorem is not known with respect to general algorithmic hardness." @default.
- W2950147139 created "2019-06-27" @default.
- W2950147139 creator A5030291460 @default.
- W2950147139 creator A5035530886 @default.
- W2950147139 creator A5053184300 @default.
- W2950147139 date "2018-09-24" @default.
- W2950147139 modified "2023-09-27" @default.
- W2950147139 title "Graph Pattern Polynomials" @default.
- W2950147139 cites W2005253487 @default.
- W2950147139 cites W2174237477 @default.
- W2950147139 hasPublicationYear "2018" @default.
- W2950147139 type Work @default.
- W2950147139 sameAs 2950147139 @default.
- W2950147139 citedByCount "0" @default.
- W2950147139 crossrefType "posted-content" @default.
- W2950147139 hasAuthorship W2950147139A5030291460 @default.
- W2950147139 hasAuthorship W2950147139A5035530886 @default.
- W2950147139 hasAuthorship W2950147139A5053184300 @default.
- W2950147139 hasConcept C11413529 @default.
- W2950147139 hasConcept C114614502 @default.
- W2950147139 hasConcept C118615104 @default.
- W2950147139 hasConcept C121332964 @default.
- W2950147139 hasConcept C131992880 @default.
- W2950147139 hasConcept C132525143 @default.
- W2950147139 hasConcept C17349429 @default.
- W2950147139 hasConcept C191241153 @default.
- W2950147139 hasConcept C202444582 @default.
- W2950147139 hasConcept C203776342 @default.
- W2950147139 hasConcept C22149727 @default.
- W2950147139 hasConcept C311688 @default.
- W2950147139 hasConcept C33923547 @default.
- W2950147139 hasConcept C61665672 @default.
- W2950147139 hasConcept C62520636 @default.
- W2950147139 hasConcept C7036158 @default.
- W2950147139 hasConcept C84114770 @default.
- W2950147139 hasConcept C84392682 @default.
- W2950147139 hasConceptScore W2950147139C11413529 @default.
- W2950147139 hasConceptScore W2950147139C114614502 @default.
- W2950147139 hasConceptScore W2950147139C118615104 @default.
- W2950147139 hasConceptScore W2950147139C121332964 @default.
- W2950147139 hasConceptScore W2950147139C131992880 @default.
- W2950147139 hasConceptScore W2950147139C132525143 @default.
- W2950147139 hasConceptScore W2950147139C17349429 @default.
- W2950147139 hasConceptScore W2950147139C191241153 @default.
- W2950147139 hasConceptScore W2950147139C202444582 @default.
- W2950147139 hasConceptScore W2950147139C203776342 @default.
- W2950147139 hasConceptScore W2950147139C22149727 @default.
- W2950147139 hasConceptScore W2950147139C311688 @default.
- W2950147139 hasConceptScore W2950147139C33923547 @default.
- W2950147139 hasConceptScore W2950147139C61665672 @default.
- W2950147139 hasConceptScore W2950147139C62520636 @default.
- W2950147139 hasConceptScore W2950147139C7036158 @default.
- W2950147139 hasConceptScore W2950147139C84114770 @default.
- W2950147139 hasConceptScore W2950147139C84392682 @default.
- W2950147139 hasLocation W29501471391 @default.
- W2950147139 hasOpenAccess W2950147139 @default.
- W2950147139 hasPrimaryLocation W29501471391 @default.
- W2950147139 hasRelatedWork W1480720049 @default.
- W2950147139 hasRelatedWork W1523717587 @default.
- W2950147139 hasRelatedWork W1677817168 @default.
- W2950147139 hasRelatedWork W2023657479 @default.
- W2950147139 hasRelatedWork W2033622225 @default.
- W2950147139 hasRelatedWork W2039166024 @default.
- W2950147139 hasRelatedWork W2048845385 @default.
- W2950147139 hasRelatedWork W2077772110 @default.
- W2950147139 hasRelatedWork W2163285673 @default.
- W2950147139 hasRelatedWork W2186663447 @default.
- W2950147139 hasRelatedWork W2249868860 @default.
- W2950147139 hasRelatedWork W2275468787 @default.
- W2950147139 hasRelatedWork W2325629123 @default.
- W2950147139 hasRelatedWork W2387423572 @default.
- W2950147139 hasRelatedWork W2906832313 @default.
- W2950147139 hasRelatedWork W2912025711 @default.
- W2950147139 hasRelatedWork W2914071834 @default.
- W2950147139 hasRelatedWork W2952286285 @default.
- W2950147139 hasRelatedWork W3042900696 @default.
- W2950147139 hasRelatedWork W1584798449 @default.
- W2950147139 isParatext "false" @default.
- W2950147139 isRetracted "false" @default.
- W2950147139 magId "2950147139" @default.
- W2950147139 workType "article" @default.