Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950161882> ?p ?o ?g. }
- W2950161882 abstract "We study inviscid limits of invariant measures for the 2D Stochastic Navier-Stokes equations. As shown in cite{Kuksin2004} the noise scaling $sqrt{nu}$ is the only one which leads to non-trivial limiting measures, which are invariant for the 2D Euler equations. We show that any limiting measure $mu_{0}$ is in fact supported on bounded vorticities. Relationships of $mu_{0}$ to the long term dynamics of Euler in the $L^{infty}$ with the weak$^{*}$ topology are discussed. In view of the Batchelor-Krainchnan 2D turbulence theory, we also consider inviscid limits for the weakly damped stochastic Navier-Stokes equation. In this setting we show that only an order zero noise (i.e. the noise scaling $nu^0$) leads to a nontrivial limiting measure in the inviscid limit." @default.
- W2950161882 created "2019-06-27" @default.
- W2950161882 creator A5045887742 @default.
- W2950161882 creator A5058571963 @default.
- W2950161882 creator A5089255575 @default.
- W2950161882 date "2013-02-03" @default.
- W2950161882 modified "2023-09-27" @default.
- W2950161882 title "On Inviscid Limits for the Stochastic Navier-Stokes Equations and Related Models" @default.
- W2950161882 cites W139694833 @default.
- W2950161882 cites W1581851824 @default.
- W2950161882 cites W1672494875 @default.
- W2950161882 cites W1887853157 @default.
- W2950161882 cites W1926455868 @default.
- W2950161882 cites W1976694225 @default.
- W2950161882 cites W1978995203 @default.
- W2950161882 cites W1980146381 @default.
- W2950161882 cites W1980793398 @default.
- W2950161882 cites W1981007600 @default.
- W2950161882 cites W1983398304 @default.
- W2950161882 cites W1985105993 @default.
- W2950161882 cites W1986380089 @default.
- W2950161882 cites W1986648919 @default.
- W2950161882 cites W1991750711 @default.
- W2950161882 cites W1993988025 @default.
- W2950161882 cites W1995639579 @default.
- W2950161882 cites W1998319262 @default.
- W2950161882 cites W1999691346 @default.
- W2950161882 cites W2008874036 @default.
- W2950161882 cites W2009375738 @default.
- W2950161882 cites W2015535719 @default.
- W2950161882 cites W2020812933 @default.
- W2950161882 cites W2025584442 @default.
- W2950161882 cites W2027690576 @default.
- W2950161882 cites W2028942074 @default.
- W2950161882 cites W2032229183 @default.
- W2950161882 cites W2033227512 @default.
- W2950161882 cites W2035147182 @default.
- W2950161882 cites W2038054616 @default.
- W2950161882 cites W2039023074 @default.
- W2950161882 cites W2039342550 @default.
- W2950161882 cites W2056077850 @default.
- W2950161882 cites W2058441860 @default.
- W2950161882 cites W2064956402 @default.
- W2950161882 cites W2070189398 @default.
- W2950161882 cites W2072545760 @default.
- W2950161882 cites W2073803764 @default.
- W2950161882 cites W2077514318 @default.
- W2950161882 cites W2080676184 @default.
- W2950161882 cites W2100500999 @default.
- W2950161882 cites W2102072643 @default.
- W2950161882 cites W2133020871 @default.
- W2950161882 cites W2144762236 @default.
- W2950161882 cites W2156362709 @default.
- W2950161882 cites W2213565566 @default.
- W2950161882 cites W2269294405 @default.
- W2950161882 cites W2314750725 @default.
- W2950161882 cites W2324610639 @default.
- W2950161882 cites W2596083410 @default.
- W2950161882 cites W2962946993 @default.
- W2950161882 cites W3094185483 @default.
- W2950161882 cites W37678801 @default.
- W2950161882 hasPublicationYear "2013" @default.
- W2950161882 type Work @default.
- W2950161882 sameAs 2950161882 @default.
- W2950161882 citedByCount "4" @default.
- W2950161882 countsByYear W29501618822013 @default.
- W2950161882 countsByYear W29501618822014 @default.
- W2950161882 countsByYear W29501618822018 @default.
- W2950161882 crossrefType "posted-content" @default.
- W2950161882 hasAuthorship W2950161882A5045887742 @default.
- W2950161882 hasAuthorship W2950161882A5058571963 @default.
- W2950161882 hasAuthorship W2950161882A5089255575 @default.
- W2950161882 hasConcept C105795698 @default.
- W2950161882 hasConcept C115667082 @default.
- W2950161882 hasConcept C121332964 @default.
- W2950161882 hasConcept C122044880 @default.
- W2950161882 hasConcept C127413603 @default.
- W2950161882 hasConcept C134306372 @default.
- W2950161882 hasConcept C135593079 @default.
- W2950161882 hasConcept C151201525 @default.
- W2950161882 hasConcept C188198153 @default.
- W2950161882 hasConcept C190470478 @default.
- W2950161882 hasConcept C196558001 @default.
- W2950161882 hasConcept C2524010 @default.
- W2950161882 hasConcept C2781278361 @default.
- W2950161882 hasConcept C33923547 @default.
- W2950161882 hasConcept C34388435 @default.
- W2950161882 hasConcept C37914503 @default.
- W2950161882 hasConcept C38409319 @default.
- W2950161882 hasConcept C62884695 @default.
- W2950161882 hasConcept C74650414 @default.
- W2950161882 hasConcept C78519656 @default.
- W2950161882 hasConcept C84655787 @default.
- W2950161882 hasConcept C86252789 @default.
- W2950161882 hasConcept C97355855 @default.
- W2950161882 hasConcept C99844830 @default.
- W2950161882 hasConceptScore W2950161882C105795698 @default.
- W2950161882 hasConceptScore W2950161882C115667082 @default.
- W2950161882 hasConceptScore W2950161882C121332964 @default.
- W2950161882 hasConceptScore W2950161882C122044880 @default.