Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950190732> ?p ?o ?g. }
- W2950190732 endingPage "101896" @default.
- W2950190732 startingPage "101896" @default.
- W2950190732 abstract "Litter production, or litterfall, is a predominant part of the carbon and nutrient cycles of forest ecosystems. As a major and relatively invariable aspect of primary production, litterfall could be a predictor of total plant production. However, the conventional field approach for its estimation is laborious and costly. High temporal resolution optical satellite imagery may strengthen our ability to estimate litterfall over a vast region, but this remote sensing method is limited in some tropical and near-tropical mountainous regions, mainly due to coarse spatial resolution and frequent cloud coverage. The metabolic scaling theory (MST) states that forest productivity (including litterfall) is directly proportional to the mass of the photosynthesis tissue (leaves), and spatially, it may be isometrically scaled using the size of the largest individual in the system. In this study, we investigated the temporal dimension of the MST and hypothesized that the maximum leaf abundance over a year could also be a key determinant of annual litter production. The relationship between the leaf mass during the peak growing season and annual litterfall could facilitate large-scale litterfall mapping in mountainous terrains, since vegetation indices such as the Enhanced Vegetation Index (EVI) or the Normalized Difference Vegetation Index (NDVI), commonly utilized as a surrogate for leaf abundance, can be derived from relatively high spatial resolution satellite imagery. We correlated the summer growing season Landsat Enhanced Thematic Mapper plus (ETM+) EVI and NDVI for 2016 and 2017 and the temporally corresponding annual accumulated field litterfall data acquired from hinoki (Chamaecyparis spp.) dominant tropical montane cloud forests in northeastern Taiwan (23.98 N, 120.97 E). We found that the summer growing season EVI and NDVI may be salient variables to explain the spatial variation of annual litter production ( r2 = 0.39–0.67, p ≤ 0.01). The results have profound implications for applying MST to the regional mapping of ecosystem production across space and time in humid tropical regions, and these implications may facilitate the remote assessment of the terrestrial carbon budget." @default.
- W2950190732 created "2019-06-27" @default.
- W2950190732 creator A5001153324 @default.
- W2950190732 creator A5074469303 @default.
- W2950190732 date "2019-10-01" @default.
- W2950190732 modified "2023-10-14" @default.
- W2950190732 title "A metabolic scaling theory-driven remote sensing approach to map spatiotemporal dynamics of litterfall in a tropical montane cloud forest" @default.
- W2950190732 cites W1551788457 @default.
- W2950190732 cites W1964570521 @default.
- W2950190732 cites W1965266283 @default.
- W2950190732 cites W1968397703 @default.
- W2950190732 cites W1981213426 @default.
- W2950190732 cites W2008225934 @default.
- W2950190732 cites W2015319397 @default.
- W2950190732 cites W2016159827 @default.
- W2950190732 cites W2022224360 @default.
- W2950190732 cites W2022319455 @default.
- W2950190732 cites W2040643204 @default.
- W2950190732 cites W2044238703 @default.
- W2950190732 cites W2048541657 @default.
- W2950190732 cites W2049861378 @default.
- W2950190732 cites W2057951568 @default.
- W2950190732 cites W2063297842 @default.
- W2950190732 cites W2064397264 @default.
- W2950190732 cites W2065688148 @default.
- W2950190732 cites W2069903502 @default.
- W2950190732 cites W2071017459 @default.
- W2950190732 cites W2080042250 @default.
- W2950190732 cites W2080843536 @default.
- W2950190732 cites W2082813889 @default.
- W2950190732 cites W2085282193 @default.
- W2950190732 cites W2093540905 @default.
- W2950190732 cites W2113410727 @default.
- W2950190732 cites W2114622872 @default.
- W2950190732 cites W2118253802 @default.
- W2950190732 cites W2126583978 @default.
- W2950190732 cites W2126931657 @default.
- W2950190732 cites W2134407841 @default.
- W2950190732 cites W2137225035 @default.
- W2950190732 cites W2137417555 @default.
- W2950190732 cites W2138751033 @default.
- W2950190732 cites W2139755242 @default.
- W2950190732 cites W2144183424 @default.
- W2950190732 cites W2147658171 @default.
- W2950190732 cites W2149832320 @default.
- W2950190732 cites W2151105127 @default.
- W2950190732 cites W2151342319 @default.
- W2950190732 cites W2151456308 @default.
- W2950190732 cites W2153989276 @default.
- W2950190732 cites W2155783865 @default.
- W2950190732 cites W2158122378 @default.
- W2950190732 cites W2166596194 @default.
- W2950190732 cites W2166944235 @default.
- W2950190732 cites W2168844419 @default.
- W2950190732 cites W2295815147 @default.
- W2950190732 cites W2495822950 @default.
- W2950190732 cites W2519626153 @default.
- W2950190732 cites W2556668190 @default.
- W2950190732 cites W2592398755 @default.
- W2950190732 cites W2772207761 @default.
- W2950190732 cites W2784466323 @default.
- W2950190732 cites W2808863816 @default.
- W2950190732 cites W2888032791 @default.
- W2950190732 cites W2898743138 @default.
- W2950190732 cites W2898867855 @default.
- W2950190732 cites W656488075 @default.
- W2950190732 doi "https://doi.org/10.1016/j.jag.2019.06.006" @default.
- W2950190732 hasPublicationYear "2019" @default.
- W2950190732 type Work @default.
- W2950190732 sameAs 2950190732 @default.
- W2950190732 citedByCount "5" @default.
- W2950190732 countsByYear W29501907322020 @default.
- W2950190732 countsByYear W29501907322022 @default.
- W2950190732 crossrefType "journal-article" @default.
- W2950190732 hasAuthorship W2950190732A5001153324 @default.
- W2950190732 hasAuthorship W2950190732A5074469303 @default.
- W2950190732 hasConcept C110872660 @default.
- W2950190732 hasConcept C142724271 @default.
- W2950190732 hasConcept C1549246 @default.
- W2950190732 hasConcept C18903297 @default.
- W2950190732 hasConcept C205649164 @default.
- W2950190732 hasConcept C23519681 @default.
- W2950190732 hasConcept C24717449 @default.
- W2950190732 hasConcept C25989453 @default.
- W2950190732 hasConcept C2775938548 @default.
- W2950190732 hasConcept C2776133958 @default.
- W2950190732 hasConcept C2778102629 @default.
- W2950190732 hasConcept C2780376076 @default.
- W2950190732 hasConcept C39432304 @default.
- W2950190732 hasConcept C45962647 @default.
- W2950190732 hasConcept C61782394 @default.
- W2950190732 hasConcept C62649853 @default.
- W2950190732 hasConcept C71924100 @default.
- W2950190732 hasConcept C78869512 @default.
- W2950190732 hasConcept C86803240 @default.
- W2950190732 hasConceptScore W2950190732C110872660 @default.
- W2950190732 hasConceptScore W2950190732C142724271 @default.
- W2950190732 hasConceptScore W2950190732C1549246 @default.