Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950191351> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2950191351 endingPage "78" @default.
- W2950191351 startingPage "78" @default.
- W2950191351 abstract "Iron deficiency anemia (IDA) and β-thalassemia trait (β-TT) are the most common types of microcytic hypochromic anemias. The similarity and the nature of anemia-related symptoms pose a foremost challenge for discriminating between IDA and β-TT. Currently, advances in technology have gave rise to computer-based decision-making systems. Therefore, advances in artificial intelligence have led to the emergence of intelligent systems and the development of tools that can assist physicians in the diagnosis and decision-making.The aim of the present study was to develop a neural network based model (Artificial Neural Network) for accurate and timely manner of differential diagnosis of IDA and β-TT in comparison with traditional methods.In this study, an artificial neural network (ANN) model as the first precise intelligent method was developed for differential diagnosis of IDA and β-TT. Data set was retrieved from Complete Blood Count (CBC) test factors of 268 individuals referred to Padad private clinical laboratory at Ahvaz, Iran in 2018. ANN models with different topologies were developed and CBC indices were examined for diagnosis of IDA and β-TT. The proposed model was simulated using MATLAB software package version 2018. The results showed the best network architecture based on the advanced multilayer algorithm (4 input factors, 70 neurons with acceptable sensitivity, specificity, and accuracy). Finally, the results obtained from ANN diagnostic model was compared to existing discriminating indexes.The results of this model showed that the specificity, sensitivity, and accuracy of the proposed diagnostic system were 92.33%, 93.13%, and 92.5%, respectably; i.e. the model could diagnose frequent occurrence of IDA in patients with β-TT.The results and evaluation of the developed model showed that the proposed neural network model has a proper accuracy and generalizability based on the initial factors of CBC testing compared to existing methods. This model can replace the high-cost methods and discriminating indices to distinguish IDA from β-TT and assist in accurate and timely manner diagnosis." @default.
- W2950191351 created "2019-06-27" @default.
- W2950191351 creator A5001345541 @default.
- W2950191351 creator A5044154915 @default.
- W2950191351 creator A5054993079 @default.
- W2950191351 date "2019-01-01" @default.
- W2950191351 modified "2023-09-27" @default.
- W2950191351 title "Differential Diagnosis of Iron-Deficiency Anemia from beta-Thalassemia Trait Using an Intelligent Model in Comparison with Discriminant Indexes" @default.
- W2950191351 cites W1588378362 @default.
- W2950191351 cites W1588567921 @default.
- W2950191351 cites W1986136091 @default.
- W2950191351 cites W2029020142 @default.
- W2950191351 cites W2064939904 @default.
- W2950191351 cites W2087476857 @default.
- W2950191351 cites W2096460708 @default.
- W2950191351 cites W2097567235 @default.
- W2950191351 cites W2159512478 @default.
- W2950191351 cites W2320509970 @default.
- W2950191351 cites W2330845108 @default.
- W2950191351 cites W3023029731 @default.
- W2950191351 cites W55833631 @default.
- W2950191351 cites W62117875 @default.
- W2950191351 doi "https://doi.org/10.5455/aim.2019.27.78-84" @default.
- W2950191351 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6688292" @default.
- W2950191351 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31452563" @default.
- W2950191351 hasPublicationYear "2019" @default.
- W2950191351 type Work @default.
- W2950191351 sameAs 2950191351 @default.
- W2950191351 citedByCount "16" @default.
- W2950191351 countsByYear W29501913512020 @default.
- W2950191351 countsByYear W29501913512021 @default.
- W2950191351 countsByYear W29501913512022 @default.
- W2950191351 countsByYear W29501913512023 @default.
- W2950191351 crossrefType "journal-article" @default.
- W2950191351 hasAuthorship W2950191351A5001345541 @default.
- W2950191351 hasAuthorship W2950191351A5044154915 @default.
- W2950191351 hasAuthorship W2950191351A5054993079 @default.
- W2950191351 hasBestOaLocation W29501913512 @default.
- W2950191351 hasConcept C111919701 @default.
- W2950191351 hasConcept C119857082 @default.
- W2950191351 hasConcept C124101348 @default.
- W2950191351 hasConcept C126322002 @default.
- W2950191351 hasConcept C142724271 @default.
- W2950191351 hasConcept C153180895 @default.
- W2950191351 hasConcept C154945302 @default.
- W2950191351 hasConcept C169903167 @default.
- W2950191351 hasConcept C2778248108 @default.
- W2950191351 hasConcept C2780365114 @default.
- W2950191351 hasConcept C2780801072 @default.
- W2950191351 hasConcept C41008148 @default.
- W2950191351 hasConcept C50644808 @default.
- W2950191351 hasConcept C71924100 @default.
- W2950191351 hasConceptScore W2950191351C111919701 @default.
- W2950191351 hasConceptScore W2950191351C119857082 @default.
- W2950191351 hasConceptScore W2950191351C124101348 @default.
- W2950191351 hasConceptScore W2950191351C126322002 @default.
- W2950191351 hasConceptScore W2950191351C142724271 @default.
- W2950191351 hasConceptScore W2950191351C153180895 @default.
- W2950191351 hasConceptScore W2950191351C154945302 @default.
- W2950191351 hasConceptScore W2950191351C169903167 @default.
- W2950191351 hasConceptScore W2950191351C2778248108 @default.
- W2950191351 hasConceptScore W2950191351C2780365114 @default.
- W2950191351 hasConceptScore W2950191351C2780801072 @default.
- W2950191351 hasConceptScore W2950191351C41008148 @default.
- W2950191351 hasConceptScore W2950191351C50644808 @default.
- W2950191351 hasConceptScore W2950191351C71924100 @default.
- W2950191351 hasIssue "2" @default.
- W2950191351 hasLocation W29501913511 @default.
- W2950191351 hasLocation W29501913512 @default.
- W2950191351 hasLocation W29501913513 @default.
- W2950191351 hasLocation W29501913514 @default.
- W2950191351 hasOpenAccess W2950191351 @default.
- W2950191351 hasPrimaryLocation W29501913511 @default.
- W2950191351 hasRelatedWork W2066259560 @default.
- W2950191351 hasRelatedWork W2392483176 @default.
- W2950191351 hasRelatedWork W2748952813 @default.
- W2950191351 hasRelatedWork W2899084033 @default.
- W2950191351 hasRelatedWork W2961085424 @default.
- W2950191351 hasRelatedWork W2977132600 @default.
- W2950191351 hasRelatedWork W3099765033 @default.
- W2950191351 hasRelatedWork W4212859008 @default.
- W2950191351 hasRelatedWork W4280583453 @default.
- W2950191351 hasRelatedWork W4280641190 @default.
- W2950191351 hasVolume "27" @default.
- W2950191351 isParatext "false" @default.
- W2950191351 isRetracted "false" @default.
- W2950191351 magId "2950191351" @default.
- W2950191351 workType "article" @default.