Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950194324> ?p ?o ?g. }
- W2950194324 endingPage "e5692" @default.
- W2950194324 startingPage "e5692" @default.
- W2950194324 abstract "Bayesian networks are directed acyclic graphical models widely used to represent the probabilistic relationships between random variables. They have been applied in various biological contexts, including gene regulatory networks and protein-protein interactions inference. Generally, learning Bayesian networks from experimental data is NP-hard, leading to widespread use of heuristic search methods giving suboptimal results. However, in cases when the acyclicity of the graph can be externally ensured, it is possible to find the optimal network in polynomial time. While our previously developed tool BNFinder implements polynomial time algorithm, reconstructing networks with the large amount of experimental data still leads to computations on single CPU growing exceedingly.In the present paper we propose parallelized algorithm designed for multi-core and distributed systems and its implementation in the improved version of BNFinder-tool for learning optimal Bayesian networks. The new algorithm has been tested on different simulated and experimental datasets showing that it has much better efficiency of parallelization than the previous version. BNFinder gives comparable results in terms of accuracy with respect to current state-of-the-art inference methods, giving significant advantage in cases when external information such as regulators list or prior edge probability can be introduced, particularly for datasets with static gene expression observations.We show that the new method can be used to reconstruct networks in the size range of thousands of genes making it practically applicable to whole genome datasets of prokaryotic systems and large components of eukaryotic genomes. Our benchmarking results on realistic datasets indicate that the tool should be useful to a wide audience of researchers interested in discovering dependencies in their large-scale transcriptomic datasets." @default.
- W2950194324 created "2019-06-27" @default.
- W2950194324 creator A5062347632 @default.
- W2950194324 creator A5081814379 @default.
- W2950194324 date "2018-10-19" @default.
- W2950194324 modified "2023-10-17" @default.
- W2950194324 title "Distributed Bayesian networks reconstruction on the whole genome scale" @default.
- W2950194324 cites W1534556330 @default.
- W2950194324 cites W1893022572 @default.
- W2950194324 cites W1970964234 @default.
- W2950194324 cites W1977859620 @default.
- W2950194324 cites W2019005509 @default.
- W2950194324 cites W2024573773 @default.
- W2950194324 cites W2044525257 @default.
- W2950194324 cites W2070302210 @default.
- W2950194324 cites W2073307618 @default.
- W2950194324 cites W2076513103 @default.
- W2950194324 cites W2094558888 @default.
- W2950194324 cites W2102456970 @default.
- W2950194324 cites W2104693064 @default.
- W2950194324 cites W2115428292 @default.
- W2950194324 cites W2121695897 @default.
- W2950194324 cites W2131301064 @default.
- W2950194324 cites W2134586291 @default.
- W2950194324 cites W2136988691 @default.
- W2950194324 cites W2139997707 @default.
- W2950194324 cites W2144731007 @default.
- W2950194324 cites W2149310258 @default.
- W2950194324 cites W2156426710 @default.
- W2950194324 cites W2157009448 @default.
- W2950194324 cites W2157121418 @default.
- W2950194324 cites W2157593856 @default.
- W2950194324 cites W2161868542 @default.
- W2950194324 cites W2163480486 @default.
- W2950194324 cites W2953208778 @default.
- W2950194324 cites W3099289621 @default.
- W2950194324 cites W4252854332 @default.
- W2950194324 doi "https://doi.org/10.7717/peerj.5692" @default.
- W2950194324 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6197044" @default.
- W2950194324 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30364537" @default.
- W2950194324 hasPublicationYear "2018" @default.
- W2950194324 type Work @default.
- W2950194324 sameAs 2950194324 @default.
- W2950194324 citedByCount "8" @default.
- W2950194324 countsByYear W29501943242017 @default.
- W2950194324 countsByYear W29501943242019 @default.
- W2950194324 countsByYear W29501943242020 @default.
- W2950194324 countsByYear W29501943242021 @default.
- W2950194324 countsByYear W29501943242022 @default.
- W2950194324 countsByYear W29501943242023 @default.
- W2950194324 crossrefType "journal-article" @default.
- W2950194324 hasAuthorship W2950194324A5062347632 @default.
- W2950194324 hasAuthorship W2950194324A5081814379 @default.
- W2950194324 hasBestOaLocation W29501943241 @default.
- W2950194324 hasConcept C107673813 @default.
- W2950194324 hasConcept C11413529 @default.
- W2950194324 hasConcept C119857082 @default.
- W2950194324 hasConcept C124101348 @default.
- W2950194324 hasConcept C154945302 @default.
- W2950194324 hasConcept C155846161 @default.
- W2950194324 hasConcept C160234255 @default.
- W2950194324 hasConcept C173801870 @default.
- W2950194324 hasConcept C2776214188 @default.
- W2950194324 hasConcept C33724603 @default.
- W2950194324 hasConcept C41008148 @default.
- W2950194324 hasConcept C49937458 @default.
- W2950194324 hasConcept C74197172 @default.
- W2950194324 hasConceptScore W2950194324C107673813 @default.
- W2950194324 hasConceptScore W2950194324C11413529 @default.
- W2950194324 hasConceptScore W2950194324C119857082 @default.
- W2950194324 hasConceptScore W2950194324C124101348 @default.
- W2950194324 hasConceptScore W2950194324C154945302 @default.
- W2950194324 hasConceptScore W2950194324C155846161 @default.
- W2950194324 hasConceptScore W2950194324C160234255 @default.
- W2950194324 hasConceptScore W2950194324C173801870 @default.
- W2950194324 hasConceptScore W2950194324C2776214188 @default.
- W2950194324 hasConceptScore W2950194324C33724603 @default.
- W2950194324 hasConceptScore W2950194324C41008148 @default.
- W2950194324 hasConceptScore W2950194324C49937458 @default.
- W2950194324 hasConceptScore W2950194324C74197172 @default.
- W2950194324 hasLocation W29501943241 @default.
- W2950194324 hasLocation W29501943242 @default.
- W2950194324 hasLocation W29501943243 @default.
- W2950194324 hasLocation W29501943244 @default.
- W2950194324 hasLocation W29501943245 @default.
- W2950194324 hasLocation W29501943246 @default.
- W2950194324 hasOpenAccess W2950194324 @default.
- W2950194324 hasPrimaryLocation W29501943241 @default.
- W2950194324 hasRelatedWork W1505105018 @default.
- W2950194324 hasRelatedWork W1715419791 @default.
- W2950194324 hasRelatedWork W1982204423 @default.
- W2950194324 hasRelatedWork W2035724326 @default.
- W2950194324 hasRelatedWork W2187019487 @default.
- W2950194324 hasRelatedWork W2443765813 @default.
- W2950194324 hasRelatedWork W3183113072 @default.
- W2950194324 hasRelatedWork W4302568932 @default.
- W2950194324 hasRelatedWork W643788828 @default.
- W2950194324 hasRelatedWork W79495945 @default.