Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950213400> ?p ?o ?g. }
- W2950213400 endingPage "105551" @default.
- W2950213400 startingPage "105551" @default.
- W2950213400 abstract "Abstract Evolutionary algorithms are generally used to find or generate the best individuals in a population. Whenever these algorithms are applied to agent systems, they will lead to optimal solutions. Genetic Network Programming (GNP), which contains graph networks, is one of the developed evolutionary algorithms. When the aim is to forecast the share price or return, ascending and descending trends, volatilities, recent returns, fundamental and technical factors have remarkable impacts on the prediction. This is why technical indicators are used to constitute a set of trading rules. In this paper, we apply an integrated framework consisting of GNP model along with a reinforcement learning and Multi-Layer Perceptron (MLP) neural network to classify data and also time series models to forecast the stock return. Moreover, we utilize rules of accumulation based on the GNP model’s results to forecast the return. The aim of using these models alongside one another is to estimate one-day return. The results derived from 9 stocks with regard to the Tehran Stock Exchange Market. GNP extracts a prodigious number of rules on the basis of 5 technical indicators with 3 times period. Next, MLP network classifies data and finds the similarity between future data and past data concerning a stock (5 sub-period) through classification. Subsequently, a number of conditions are established, in order to choose the best estimation between GNP-RL and ARMA. Distinct comparison with the ARMA–GARCH model, which is operated for return estimation and risk measurement in many researches, demonstrates an extended forecasting power of the proposed model, by the name of GNP–ARMA, reducing error by a mean of 16%." @default.
- W2950213400 created "2019-06-27" @default.
- W2950213400 creator A5007122108 @default.
- W2950213400 creator A5029878181 @default.
- W2950213400 creator A5044998699 @default.
- W2950213400 date "2019-09-01" @default.
- W2950213400 modified "2023-09-30" @default.
- W2950213400 title "An integrated framework of genetic network programming and multi-layer perceptron neural network for prediction of daily stock return: An application in Tehran stock exchange market" @default.
- W2950213400 cites W1189233655 @default.
- W2950213400 cites W1943807073 @default.
- W2950213400 cites W1964298122 @default.
- W2950213400 cites W1971967963 @default.
- W2950213400 cites W1976906381 @default.
- W2950213400 cites W1979054437 @default.
- W2950213400 cites W1997069306 @default.
- W2950213400 cites W2002203871 @default.
- W2950213400 cites W2002684377 @default.
- W2950213400 cites W2002685209 @default.
- W2950213400 cites W2005346797 @default.
- W2950213400 cites W2022391082 @default.
- W2950213400 cites W2037532761 @default.
- W2950213400 cites W2038227460 @default.
- W2950213400 cites W2038644112 @default.
- W2950213400 cites W2049916782 @default.
- W2950213400 cites W2059746474 @default.
- W2950213400 cites W2067520707 @default.
- W2950213400 cites W2074250525 @default.
- W2950213400 cites W2080265874 @default.
- W2950213400 cites W2085741690 @default.
- W2950213400 cites W2086600750 @default.
- W2950213400 cites W2103153715 @default.
- W2950213400 cites W2195085701 @default.
- W2950213400 cites W2286146989 @default.
- W2950213400 cites W2296966686 @default.
- W2950213400 cites W2518092688 @default.
- W2950213400 cites W2595933927 @default.
- W2950213400 cites W2607012243 @default.
- W2950213400 cites W2744016515 @default.
- W2950213400 cites W2762958083 @default.
- W2950213400 cites W2762976654 @default.
- W2950213400 cites W2773057751 @default.
- W2950213400 cites W2797416167 @default.
- W2950213400 cites W2800952306 @default.
- W2950213400 cites W2806777472 @default.
- W2950213400 cites W2884550978 @default.
- W2950213400 cites W2912036663 @default.
- W2950213400 cites W2912614123 @default.
- W2950213400 cites W4212883601 @default.
- W2950213400 cites W608402566 @default.
- W2950213400 cites W944856202 @default.
- W2950213400 cites W2332959600 @default.
- W2950213400 doi "https://doi.org/10.1016/j.asoc.2019.105551" @default.
- W2950213400 hasPublicationYear "2019" @default.
- W2950213400 type Work @default.
- W2950213400 sameAs 2950213400 @default.
- W2950213400 citedByCount "36" @default.
- W2950213400 countsByYear W29502134002019 @default.
- W2950213400 countsByYear W29502134002020 @default.
- W2950213400 countsByYear W29502134002021 @default.
- W2950213400 countsByYear W29502134002022 @default.
- W2950213400 countsByYear W29502134002023 @default.
- W2950213400 crossrefType "journal-article" @default.
- W2950213400 hasAuthorship W2950213400A5007122108 @default.
- W2950213400 hasAuthorship W2950213400A5029878181 @default.
- W2950213400 hasAuthorship W2950213400A5044998699 @default.
- W2950213400 hasConcept C10138342 @default.
- W2950213400 hasConcept C110332635 @default.
- W2950213400 hasConcept C119857082 @default.
- W2950213400 hasConcept C127413603 @default.
- W2950213400 hasConcept C144133560 @default.
- W2950213400 hasConcept C149782125 @default.
- W2950213400 hasConcept C151730666 @default.
- W2950213400 hasConcept C154945302 @default.
- W2950213400 hasConcept C162324750 @default.
- W2950213400 hasConcept C179717631 @default.
- W2950213400 hasConcept C200870193 @default.
- W2950213400 hasConcept C204036174 @default.
- W2950213400 hasConcept C2780299701 @default.
- W2950213400 hasConcept C2780762169 @default.
- W2950213400 hasConcept C41008148 @default.
- W2950213400 hasConcept C50644808 @default.
- W2950213400 hasConcept C60908668 @default.
- W2950213400 hasConcept C78519656 @default.
- W2950213400 hasConcept C86803240 @default.
- W2950213400 hasConceptScore W2950213400C10138342 @default.
- W2950213400 hasConceptScore W2950213400C110332635 @default.
- W2950213400 hasConceptScore W2950213400C119857082 @default.
- W2950213400 hasConceptScore W2950213400C127413603 @default.
- W2950213400 hasConceptScore W2950213400C144133560 @default.
- W2950213400 hasConceptScore W2950213400C149782125 @default.
- W2950213400 hasConceptScore W2950213400C151730666 @default.
- W2950213400 hasConceptScore W2950213400C154945302 @default.
- W2950213400 hasConceptScore W2950213400C162324750 @default.
- W2950213400 hasConceptScore W2950213400C179717631 @default.
- W2950213400 hasConceptScore W2950213400C200870193 @default.
- W2950213400 hasConceptScore W2950213400C204036174 @default.
- W2950213400 hasConceptScore W2950213400C2780299701 @default.
- W2950213400 hasConceptScore W2950213400C2780762169 @default.