Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950274107> ?p ?o ?g. }
- W2950274107 abstract "The problem of describing the group of units $mathcal{U}(mathbb{Z} G)$ of the integral group ring $mathbb{Z} G$ of a finite group $G$ has attracted a lot of attention and providing presentations for such groups is a fundamental problem. Within the context of orders, a central problem is to describe a presentation of the unit group of an order $mathcal{O}$ in the simple epimorphic images $A$ of the rational group algebra $mathbb{Q} G$. Making use of the presentation part of Poincar'e's Polyhedron Theorem, Pita, del R'io and Ruiz proposed such a method for a large family of finite groups $G$ and consequently Jespers, Pita, del R'io, Ruiz and Zalesskii described the structure of $mathcal{U}(mathbb{Z} G)$ for a large family of finite groups $G$. In order to handle many more groups, one would like to extend Poincar'e's Method to discontinuous subgroups of the group of isometries of a direct product of hyperbolic spaces. If the algebra $A$ has degree 2 then via the Galois embeddings of the centre of the algebra $A$ one considers the group of reduced norm one elements of the order $O$ as such a group and thus one would obtain a solution to the mentioned problem. This would provide presentations of the unit group of orders in the simple components of degree 2 of $mathbb{Q} G$ and in particular describe the unit group of $mathbb{Z} G$ for every group $G$ with irreducible character degrees less than or equal to 2. The aim of this paper is to initiate this approach by executing this method on the Hilbert modular group, i.e. the projective linear group of degree two over the ring of integers in a real quadratic extension of the rationals. This group acts discontinuously on a direct product of two hyperbolic spaces of dimension two. The fundamental domain constructed is an analogue of the Ford domain of a Fuchsian or a Kleinian group." @default.
- W2950274107 created "2019-06-27" @default.
- W2950274107 creator A5022675321 @default.
- W2950274107 creator A5044180020 @default.
- W2950274107 creator A5050566203 @default.
- W2950274107 date "2015-04-29" @default.
- W2950274107 modified "2023-09-27" @default.
- W2950274107 title "Presentations of Groups Acting Discontinuously on Direct Products of Hyperbolic Spaces" @default.
- W2950274107 cites W1495102347 @default.
- W2950274107 cites W1502669108 @default.
- W2950274107 cites W1563676847 @default.
- W2950274107 cites W1577194420 @default.
- W2950274107 cites W1828839365 @default.
- W2950274107 cites W1865777718 @default.
- W2950274107 cites W1988217051 @default.
- W2950274107 cites W1997256229 @default.
- W2950274107 cites W2044031136 @default.
- W2950274107 cites W2051371396 @default.
- W2950274107 cites W2054547744 @default.
- W2950274107 cites W2070257885 @default.
- W2950274107 cites W2079968258 @default.
- W2950274107 cites W2080694865 @default.
- W2950274107 cites W2087967913 @default.
- W2950274107 cites W2092810707 @default.
- W2950274107 cites W2105776550 @default.
- W2950274107 cites W2116910671 @default.
- W2950274107 cites W2314572403 @default.
- W2950274107 cites W2493043470 @default.
- W2950274107 cites W2579405108 @default.
- W2950274107 cites W2962907353 @default.
- W2950274107 cites W2962996686 @default.
- W2950274107 cites W2964295656 @default.
- W2950274107 cites W3100242375 @default.
- W2950274107 cites W3151406557 @default.
- W2950274107 cites W2037681593 @default.
- W2950274107 cites W3203668817 @default.
- W2950274107 hasPublicationYear "2015" @default.
- W2950274107 type Work @default.
- W2950274107 sameAs 2950274107 @default.
- W2950274107 citedByCount "0" @default.
- W2950274107 crossrefType "posted-content" @default.
- W2950274107 hasAuthorship W2950274107A5022675321 @default.
- W2950274107 hasAuthorship W2950274107A5044180020 @default.
- W2950274107 hasAuthorship W2950274107A5050566203 @default.
- W2950274107 hasConcept C10138342 @default.
- W2950274107 hasConcept C111472728 @default.
- W2950274107 hasConcept C114614502 @default.
- W2950274107 hasConcept C120047569 @default.
- W2950274107 hasConcept C121332964 @default.
- W2950274107 hasConcept C122637931 @default.
- W2950274107 hasConcept C136119220 @default.
- W2950274107 hasConcept C138885662 @default.
- W2950274107 hasConcept C145420912 @default.
- W2950274107 hasConcept C162324750 @default.
- W2950274107 hasConcept C182306322 @default.
- W2950274107 hasConcept C202444582 @default.
- W2950274107 hasConcept C2777404646 @default.
- W2950274107 hasConcept C2780586882 @default.
- W2950274107 hasConcept C2781311116 @default.
- W2950274107 hasConcept C33923547 @default.
- W2950274107 hasConcept C5383885 @default.
- W2950274107 hasConcept C58193220 @default.
- W2950274107 hasConcept C62520636 @default.
- W2950274107 hasConcept C76572486 @default.
- W2950274107 hasConceptScore W2950274107C10138342 @default.
- W2950274107 hasConceptScore W2950274107C111472728 @default.
- W2950274107 hasConceptScore W2950274107C114614502 @default.
- W2950274107 hasConceptScore W2950274107C120047569 @default.
- W2950274107 hasConceptScore W2950274107C121332964 @default.
- W2950274107 hasConceptScore W2950274107C122637931 @default.
- W2950274107 hasConceptScore W2950274107C136119220 @default.
- W2950274107 hasConceptScore W2950274107C138885662 @default.
- W2950274107 hasConceptScore W2950274107C145420912 @default.
- W2950274107 hasConceptScore W2950274107C162324750 @default.
- W2950274107 hasConceptScore W2950274107C182306322 @default.
- W2950274107 hasConceptScore W2950274107C202444582 @default.
- W2950274107 hasConceptScore W2950274107C2777404646 @default.
- W2950274107 hasConceptScore W2950274107C2780586882 @default.
- W2950274107 hasConceptScore W2950274107C2781311116 @default.
- W2950274107 hasConceptScore W2950274107C33923547 @default.
- W2950274107 hasConceptScore W2950274107C5383885 @default.
- W2950274107 hasConceptScore W2950274107C58193220 @default.
- W2950274107 hasConceptScore W2950274107C62520636 @default.
- W2950274107 hasConceptScore W2950274107C76572486 @default.
- W2950274107 hasLocation W29502741071 @default.
- W2950274107 hasOpenAccess W2950274107 @default.
- W2950274107 hasPrimaryLocation W29502741071 @default.
- W2950274107 hasRelatedWork W1039036013 @default.
- W2950274107 hasRelatedWork W1680913331 @default.
- W2950274107 hasRelatedWork W1887519185 @default.
- W2950274107 hasRelatedWork W1934499608 @default.
- W2950274107 hasRelatedWork W2005974548 @default.
- W2950274107 hasRelatedWork W2035423620 @default.
- W2950274107 hasRelatedWork W2041156961 @default.
- W2950274107 hasRelatedWork W2066099206 @default.
- W2950274107 hasRelatedWork W2070958381 @default.
- W2950274107 hasRelatedWork W2120779243 @default.
- W2950274107 hasRelatedWork W2130527974 @default.
- W2950274107 hasRelatedWork W2145217285 @default.
- W2950274107 hasRelatedWork W2274370446 @default.