Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950284441> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2950284441 abstract "In this paper, we consider the problem of finding a cycle of length $2k$ (a $C_{2k}$) in an undirected graph $G$ with $n$ nodes and $m$ edges for constant $kge2$. A classic result by Bondy and Simonovits [this http URL.'74] implies that if $m ge100k n^{1+1/k}$, then $G$ contains a $C_{2k}$, further implying that one needs to consider only graphs with $m = O(n^{1+1/k})$. Previously the best known algorithms were an $O(n^2)$ algorithm due to Yuster and Zwick [J.Disc.Math'97] as well as a $O(m^{2-(1+lceil k/2rceil^{-1})/(k+1)})$ algorithm by Alon et al. [Algorithmica'97]. We present an algorithm that uses $O(m^{2k/(k+1)})$ time and finds a $C_{2k}$ if one exists. This bound is $O(n^2)$ exactly when $m=Theta(n^{1+1/k})$. For $4$-cycles our new bound coincides with Alon et al., while for every $k>2$ our bound yields a polynomial improvement in $m$. Yuster and Zwick noted that it is plausible to conjecture that $O(n^2)$ is the best possible bound in terms of $n$. We show conditional optimality: if this hypothesis holds then our $O(m^{2k/(k+1)})$ algorithm is tight as well. Furthermore, a folklore reduction implies that no combinatorial algorithm can determine if a graph contains a $6$-cycle in time $O(m^{3/2-epsilon})$ for any $epsilon>0$ under the widely believed combinatorial BMM conjecture. Coupled with our main result, this gives tight bounds for finding $6$-cycles combinatorially and also separates the complexity of finding $4$- and $6$-cycles giving evidence that the exponent of $m$ in the running time should indeed increase with $k$. The key ingredient in our algorithm is a new notion of capped $k$-walks, which are walks of length $k$ that visit only nodes according to a fixed ordering. Our main technical contribution is an involved analysis proving several properties of such walks which may be of independent interest." @default.
- W2950284441 created "2019-06-27" @default.
- W2950284441 creator A5037911463 @default.
- W2950284441 creator A5043525193 @default.
- W2950284441 creator A5052881435 @default.
- W2950284441 date "2017-03-30" @default.
- W2950284441 modified "2023-09-27" @default.
- W2950284441 title "Finding Even Cycles Faster via Capped k-Walks" @default.
- W2950284441 cites W1967066104 @default.
- W2950284441 cites W1991858502 @default.
- W2950284441 hasPublicationYear "2017" @default.
- W2950284441 type Work @default.
- W2950284441 sameAs 2950284441 @default.
- W2950284441 citedByCount "1" @default.
- W2950284441 countsByYear W29502844412017 @default.
- W2950284441 crossrefType "posted-content" @default.
- W2950284441 hasAuthorship W2950284441A5037911463 @default.
- W2950284441 hasAuthorship W2950284441A5043525193 @default.
- W2950284441 hasAuthorship W2950284441A5052881435 @default.
- W2950284441 hasConcept C114614502 @default.
- W2950284441 hasConcept C118615104 @default.
- W2950284441 hasConcept C132525143 @default.
- W2950284441 hasConcept C134306372 @default.
- W2950284441 hasConcept C2780990831 @default.
- W2950284441 hasConcept C2988809283 @default.
- W2950284441 hasConcept C3018234147 @default.
- W2950284441 hasConcept C33923547 @default.
- W2950284441 hasConcept C77553402 @default.
- W2950284441 hasConceptScore W2950284441C114614502 @default.
- W2950284441 hasConceptScore W2950284441C118615104 @default.
- W2950284441 hasConceptScore W2950284441C132525143 @default.
- W2950284441 hasConceptScore W2950284441C134306372 @default.
- W2950284441 hasConceptScore W2950284441C2780990831 @default.
- W2950284441 hasConceptScore W2950284441C2988809283 @default.
- W2950284441 hasConceptScore W2950284441C3018234147 @default.
- W2950284441 hasConceptScore W2950284441C33923547 @default.
- W2950284441 hasConceptScore W2950284441C77553402 @default.
- W2950284441 hasLocation W29502844411 @default.
- W2950284441 hasOpenAccess W2950284441 @default.
- W2950284441 hasPrimaryLocation W29502844411 @default.
- W2950284441 hasRelatedWork W1582840176 @default.
- W2950284441 hasRelatedWork W1789447435 @default.
- W2950284441 hasRelatedWork W1790340838 @default.
- W2950284441 hasRelatedWork W1967041330 @default.
- W2950284441 hasRelatedWork W2127536330 @default.
- W2950284441 hasRelatedWork W2341964534 @default.
- W2950284441 hasRelatedWork W2752311959 @default.
- W2950284441 hasRelatedWork W2802383290 @default.
- W2950284441 hasRelatedWork W2884734563 @default.
- W2950284441 hasRelatedWork W2886629687 @default.
- W2950284441 hasRelatedWork W2949444750 @default.
- W2950284441 hasRelatedWork W2951814478 @default.
- W2950284441 hasRelatedWork W2963519787 @default.
- W2950284441 hasRelatedWork W2963892825 @default.
- W2950284441 hasRelatedWork W2964642894 @default.
- W2950284441 hasRelatedWork W297160816 @default.
- W2950284441 hasRelatedWork W3036033298 @default.
- W2950284441 hasRelatedWork W3123868149 @default.
- W2950284441 hasRelatedWork W3137429815 @default.
- W2950284441 hasRelatedWork W3204521370 @default.
- W2950284441 isParatext "false" @default.
- W2950284441 isRetracted "false" @default.
- W2950284441 magId "2950284441" @default.
- W2950284441 workType "article" @default.