Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950361307> ?p ?o ?g. }
- W2950361307 endingPage "86" @default.
- W2950361307 startingPage "1" @default.
- W2950361307 abstract "There is a tremendous need to have perennial and continuous access to cost-effective electricity generated from the intermittent energy sources (wind, solar, geothermal, hydropower, wave etc.). This will require development of inexpensive and efficient electrical energy storage (EES) devices such as stationary battery for uninterrupted electricity (power storage back up) and load leveling as well as grid energy storage systems [1–6]. Magnesium based secondary batteries are a viable ‘environmental friendly, non-toxic’ alternative compared to the immensely popular Li-ion systems owing to its high volumetric capacity (3833 mA h/cc for Mg vs. 2046 mA h/cc for Li) for stationary EES applications. Following the successful demonstration of a prototype magnesium cell capable of offering energy density ∼60 W h/kg in the early 2000, the last decade has witnessed tremendous amount of work dedicated to magnesium battery and its components. The present review is an earnest attempt to collect all of the comprehensive body of research performed in the literature hitherto to develop non-aqueous nucleophilic/non-nucleophilic liquid electrolytes, ionic liquid based polymer as well as solid/gel polymer electrolytes; intercalation/insertion/conversion type cathodes; metallic magnesium and their alloys/intermetallic/composites as anodes; and electronically conductive but chemically and electrochemically inert current collectors for magnesium battery. The limited electrochemical oxidative stability of current generation of electrolytes with inherently slow magnesium-ion diffusion in to electrodes as well as the inability of Mg2+ to reversibly cycle in all but a few materials systems impede the growth of high power and high energy density magnesium cells, analogous to Li-ion systems. Before the successful fabrication of a prototype magnesium battery, optimization of electrolyte performance, the realization of suitable intercalation/insertion cathodes and the identification of alternative alloys, intermetallics, composites and compounds as anodes are highly critical. Exploration of the compatibility of various battery parts including metallic current collectors with currently used organochloro electrolytes sheds light on the electrochemical corrosion of metals such as Cu, Al, stainless steel (SS) toward chlorinated Grignard’s salts warranting further investigation for identifying, electrically conducting and electrochemically inert current collectors. Results to date show the preferential selectivity of certain electronically conducting metallic and non-metallic current collectors for rechargeable magnesium batteries owing to its high anodic stability in the present electrolyte. Development of magnesium-ion battery therefore requires an interdisciplinary approach with a sound understanding of organometallic and inorganic chemistry, adequate knowledge of materials chemistry, materials science and engineering, as well as electrochemistry, and a comprehensive knowledge of metallic corrosion principles in basic/acidic electrolytic environments in order that a system with acceptable energy density (∼150–200 W h/kg) and operational voltage ∼2–3 V can be developed in the near future." @default.
- W2950361307 created "2019-06-27" @default.
- W2950361307 creator A5018154570 @default.
- W2950361307 creator A5018513600 @default.
- W2950361307 creator A5019038309 @default.
- W2950361307 creator A5045437104 @default.
- W2950361307 creator A5089721944 @default.
- W2950361307 creator A5090003388 @default.
- W2950361307 date "2014-10-01" @default.
- W2950361307 modified "2023-10-18" @default.
- W2950361307 title "Rechargeable magnesium battery: Current status and key challenges for the future" @default.
- W2950361307 cites W1485567329 @default.
- W2950361307 cites W1544711623 @default.
- W2950361307 cites W1550321831 @default.
- W2950361307 cites W1639753480 @default.
- W2950361307 cites W1931337757 @default.
- W2950361307 cites W1946200942 @default.
- W2950361307 cites W1964388116 @default.
- W2950361307 cites W1964907830 @default.
- W2950361307 cites W1966750757 @default.
- W2950361307 cites W1966841993 @default.
- W2950361307 cites W1967763571 @default.
- W2950361307 cites W1967908115 @default.
- W2950361307 cites W1967922714 @default.
- W2950361307 cites W1968471247 @default.
- W2950361307 cites W1969760407 @default.
- W2950361307 cites W1970509724 @default.
- W2950361307 cites W1970529682 @default.
- W2950361307 cites W1970778848 @default.
- W2950361307 cites W1970953080 @default.
- W2950361307 cites W1970996323 @default.
- W2950361307 cites W1971307452 @default.
- W2950361307 cites W1972403726 @default.
- W2950361307 cites W1973035169 @default.
- W2950361307 cites W1973477230 @default.
- W2950361307 cites W1974946951 @default.
- W2950361307 cites W1975431395 @default.
- W2950361307 cites W1976862128 @default.
- W2950361307 cites W1977696304 @default.
- W2950361307 cites W1978248361 @default.
- W2950361307 cites W1978805319 @default.
- W2950361307 cites W1979175582 @default.
- W2950361307 cites W1979544533 @default.
- W2950361307 cites W1980047188 @default.
- W2950361307 cites W1981523648 @default.
- W2950361307 cites W1981668423 @default.
- W2950361307 cites W1981727281 @default.
- W2950361307 cites W1982604477 @default.
- W2950361307 cites W1983485843 @default.
- W2950361307 cites W1983957774 @default.
- W2950361307 cites W1984392086 @default.
- W2950361307 cites W1985688842 @default.
- W2950361307 cites W1988448761 @default.
- W2950361307 cites W1989245991 @default.
- W2950361307 cites W1989799765 @default.
- W2950361307 cites W1990742694 @default.
- W2950361307 cites W1990925752 @default.
- W2950361307 cites W1991940951 @default.
- W2950361307 cites W1991941189 @default.
- W2950361307 cites W1992845548 @default.
- W2950361307 cites W1994380021 @default.
- W2950361307 cites W1997348700 @default.
- W2950361307 cites W1997467322 @default.
- W2950361307 cites W2000538309 @default.
- W2950361307 cites W2000597976 @default.
- W2950361307 cites W2000876649 @default.
- W2950361307 cites W2001423077 @default.
- W2950361307 cites W2001618857 @default.
- W2950361307 cites W2001721635 @default.
- W2950361307 cites W2003213349 @default.
- W2950361307 cites W2003311713 @default.
- W2950361307 cites W2003408758 @default.
- W2950361307 cites W2003656026 @default.
- W2950361307 cites W2003839446 @default.
- W2950361307 cites W2003942214 @default.
- W2950361307 cites W2003948873 @default.
- W2950361307 cites W2006607440 @default.
- W2950361307 cites W2006841186 @default.
- W2950361307 cites W2007395042 @default.
- W2950361307 cites W2008116676 @default.
- W2950361307 cites W2008372857 @default.
- W2950361307 cites W2008434808 @default.
- W2950361307 cites W2008558992 @default.
- W2950361307 cites W2011084647 @default.
- W2950361307 cites W2011777408 @default.
- W2950361307 cites W2012539080 @default.
- W2950361307 cites W2013054122 @default.
- W2950361307 cites W2013241407 @default.
- W2950361307 cites W2013601396 @default.
- W2950361307 cites W2017288674 @default.
- W2950361307 cites W2018656208 @default.
- W2950361307 cites W2020300428 @default.
- W2950361307 cites W2021051945 @default.
- W2950361307 cites W2022491854 @default.
- W2950361307 cites W2022829026 @default.
- W2950361307 cites W2024357957 @default.
- W2950361307 cites W2024656002 @default.
- W2950361307 cites W2025051980 @default.