Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950364025> ?p ?o ?g. }
- W2950364025 abstract "Estimating characteristics of large graphs via sampling is a vital part of the study of complex networks. Current sampling methods such as (independent) random vertex and random walks are useful but have drawbacks. Random vertex sampling may require too many resources (time, bandwidth, or money). Random walks, which normally require fewer resources per sample, can suffer from large estimation errors in the presence of disconnected or loosely connected graphs. In this work we propose a new $m$-dimensional random walk that uses $m$ dependent random walkers. We show that the proposed sampling method, which we call Frontier sampling, exhibits all of the nice sampling properties of a regular random walk. At the same time, our simulations over large real world graphs show that, in the presence of disconnected or loosely connected components, Frontier sampling exhibits lower estimation errors than regular random walks. We also show that Frontier sampling is more suitable than random vertex sampling to sample the tail of the degree distribution of the graph." @default.
- W2950364025 created "2019-06-27" @default.
- W2950364025 creator A5035917702 @default.
- W2950364025 creator A5036683370 @default.
- W2950364025 date "2010-02-09" @default.
- W2950364025 modified "2023-09-23" @default.
- W2950364025 title "Estimating and Sampling Graphs with Multidimensional Random Walks" @default.
- W2950364025 cites W1514107797 @default.
- W2950364025 cites W1550809968 @default.
- W2950364025 cites W1600293573 @default.
- W2950364025 cites W1983403768 @default.
- W2950364025 cites W1983416950 @default.
- W2950364025 cites W1985215886 @default.
- W2950364025 cites W1989856433 @default.
- W2950364025 cites W1995713768 @default.
- W2950364025 cites W2000280231 @default.
- W2950364025 cites W2008620264 @default.
- W2950364025 cites W2017274979 @default.
- W2950364025 cites W2022362911 @default.
- W2950364025 cites W2037520821 @default.
- W2950364025 cites W2040956707 @default.
- W2950364025 cites W2048971218 @default.
- W2950364025 cites W2056756564 @default.
- W2950364025 cites W2070722739 @default.
- W2950364025 cites W2105241801 @default.
- W2950364025 cites W2106308513 @default.
- W2950364025 cites W2112090702 @default.
- W2950364025 cites W2115022330 @default.
- W2950364025 cites W2121525148 @default.
- W2950364025 cites W2131717044 @default.
- W2950364025 cites W2146008005 @default.
- W2950364025 cites W2148606196 @default.
- W2950364025 cites W2155711776 @default.
- W2950364025 cites W2166692930 @default.
- W2950364025 cites W2166842410 @default.
- W2950364025 cites W2168380307 @default.
- W2950364025 cites W2170358724 @default.
- W2950364025 cites W2295141584 @default.
- W2950364025 cites W2751862591 @default.
- W2950364025 cites W3006625324 @default.
- W2950364025 doi "https://doi.org/10.48550/arxiv.1002.1751" @default.
- W2950364025 hasPublicationYear "2010" @default.
- W2950364025 type Work @default.
- W2950364025 sameAs 2950364025 @default.
- W2950364025 citedByCount "39" @default.
- W2950364025 countsByYear W29503640252012 @default.
- W2950364025 countsByYear W29503640252013 @default.
- W2950364025 countsByYear W29503640252014 @default.
- W2950364025 countsByYear W29503640252015 @default.
- W2950364025 countsByYear W29503640252016 @default.
- W2950364025 countsByYear W29503640252017 @default.
- W2950364025 countsByYear W29503640252018 @default.
- W2950364025 countsByYear W29503640252020 @default.
- W2950364025 countsByYear W29503640252021 @default.
- W2950364025 crossrefType "posted-content" @default.
- W2950364025 hasAuthorship W2950364025A5035917702 @default.
- W2950364025 hasAuthorship W2950364025A5036683370 @default.
- W2950364025 hasBestOaLocation W29503640251 @default.
- W2950364025 hasConcept C105795698 @default.
- W2950364025 hasConcept C106131492 @default.
- W2950364025 hasConcept C114614502 @default.
- W2950364025 hasConcept C118615104 @default.
- W2950364025 hasConcept C121194460 @default.
- W2950364025 hasConcept C132525143 @default.
- W2950364025 hasConcept C140779682 @default.
- W2950364025 hasConcept C144024400 @default.
- W2950364025 hasConcept C149923435 @default.
- W2950364025 hasConcept C166957645 @default.
- W2950364025 hasConcept C167723999 @default.
- W2950364025 hasConcept C170593435 @default.
- W2950364025 hasConcept C185592680 @default.
- W2950364025 hasConcept C192489979 @default.
- W2950364025 hasConcept C19499675 @default.
- W2950364025 hasConcept C198531522 @default.
- W2950364025 hasConcept C20353970 @default.
- W2950364025 hasConcept C205649164 @default.
- W2950364025 hasConcept C2778571376 @default.
- W2950364025 hasConcept C2908647359 @default.
- W2950364025 hasConcept C31972630 @default.
- W2950364025 hasConcept C33923547 @default.
- W2950364025 hasConcept C41008148 @default.
- W2950364025 hasConcept C43617362 @default.
- W2950364025 hasConcept C47458327 @default.
- W2950364025 hasConcept C52740198 @default.
- W2950364025 hasConcept C80899671 @default.
- W2950364025 hasConcept C82152865 @default.
- W2950364025 hasConceptScore W2950364025C105795698 @default.
- W2950364025 hasConceptScore W2950364025C106131492 @default.
- W2950364025 hasConceptScore W2950364025C114614502 @default.
- W2950364025 hasConceptScore W2950364025C118615104 @default.
- W2950364025 hasConceptScore W2950364025C121194460 @default.
- W2950364025 hasConceptScore W2950364025C132525143 @default.
- W2950364025 hasConceptScore W2950364025C140779682 @default.
- W2950364025 hasConceptScore W2950364025C144024400 @default.
- W2950364025 hasConceptScore W2950364025C149923435 @default.
- W2950364025 hasConceptScore W2950364025C166957645 @default.
- W2950364025 hasConceptScore W2950364025C167723999 @default.
- W2950364025 hasConceptScore W2950364025C170593435 @default.
- W2950364025 hasConceptScore W2950364025C185592680 @default.
- W2950364025 hasConceptScore W2950364025C192489979 @default.