Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950365114> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2950365114 abstract "Classification of nuclei patterns in histopathological images has a significant interest in a wide range of biomedical research. In recent years, deep learning approaches have solved different issues and shown promising results in histopathological images. These developments have assisted researchers to distinguish different types of pathological nuclei samples without high labeling cost. In the normal routine, examination of histopathological slides under a microscope might be sensitive, slow and inaccurate due to subjective evaluations. In this study, we aim two different types of machine learning approaches for automatic nuclei classification in histopathological images on University of Warwick's colon data set with four nuclei types: Epithelial, inflammatory, fibroblast and other. The first approach was based on a convolutional neural network-based feature extraction with support vector machine-based classification. In the second approach, local phase quantization (LPQ) is applied along with support vector machine-based classification with data set augmentation. The obtained results achieved high accuracy rates on the classification of nuclei in histopathological images." @default.
- W2950365114 created "2019-06-27" @default.
- W2950365114 creator A5052618378 @default.
- W2950365114 creator A5082045666 @default.
- W2950365114 date "2019-04-01" @default.
- W2950365114 modified "2023-09-23" @default.
- W2950365114 title "Nuclei Classification in Histopathological Images via Local Phase Quantization and Convolutional Neural Network" @default.
- W2950365114 cites W1607979445 @default.
- W2950365114 cites W1970120446 @default.
- W2950365114 cites W1980977406 @default.
- W2950365114 cites W2051765910 @default.
- W2950365114 cites W2119821739 @default.
- W2950365114 cites W2141619730 @default.
- W2950365114 cites W2151608510 @default.
- W2950365114 cites W2153635508 @default.
- W2950365114 cites W2312404985 @default.
- W2950365114 cites W2519560949 @default.
- W2950365114 cites W2554892747 @default.
- W2950365114 cites W2592618673 @default.
- W2950365114 cites W2593901215 @default.
- W2950365114 cites W2771907641 @default.
- W2950365114 cites W2801370692 @default.
- W2950365114 cites W2805463446 @default.
- W2950365114 cites W2963614749 @default.
- W2950365114 doi "https://doi.org/10.1109/ebbt.2019.8742006" @default.
- W2950365114 hasPublicationYear "2019" @default.
- W2950365114 type Work @default.
- W2950365114 sameAs 2950365114 @default.
- W2950365114 citedByCount "0" @default.
- W2950365114 crossrefType "proceedings-article" @default.
- W2950365114 hasAuthorship W2950365114A5052618378 @default.
- W2950365114 hasAuthorship W2950365114A5082045666 @default.
- W2950365114 hasConcept C115961682 @default.
- W2950365114 hasConcept C12267149 @default.
- W2950365114 hasConcept C142724271 @default.
- W2950365114 hasConcept C153180895 @default.
- W2950365114 hasConcept C154945302 @default.
- W2950365114 hasConcept C2777522853 @default.
- W2950365114 hasConcept C3020547009 @default.
- W2950365114 hasConcept C41008148 @default.
- W2950365114 hasConcept C50644808 @default.
- W2950365114 hasConcept C52622490 @default.
- W2950365114 hasConcept C58489278 @default.
- W2950365114 hasConcept C71924100 @default.
- W2950365114 hasConcept C75294576 @default.
- W2950365114 hasConcept C81363708 @default.
- W2950365114 hasConceptScore W2950365114C115961682 @default.
- W2950365114 hasConceptScore W2950365114C12267149 @default.
- W2950365114 hasConceptScore W2950365114C142724271 @default.
- W2950365114 hasConceptScore W2950365114C153180895 @default.
- W2950365114 hasConceptScore W2950365114C154945302 @default.
- W2950365114 hasConceptScore W2950365114C2777522853 @default.
- W2950365114 hasConceptScore W2950365114C3020547009 @default.
- W2950365114 hasConceptScore W2950365114C41008148 @default.
- W2950365114 hasConceptScore W2950365114C50644808 @default.
- W2950365114 hasConceptScore W2950365114C52622490 @default.
- W2950365114 hasConceptScore W2950365114C58489278 @default.
- W2950365114 hasConceptScore W2950365114C71924100 @default.
- W2950365114 hasConceptScore W2950365114C75294576 @default.
- W2950365114 hasConceptScore W2950365114C81363708 @default.
- W2950365114 hasLocation W29503651141 @default.
- W2950365114 hasOpenAccess W2950365114 @default.
- W2950365114 hasPrimaryLocation W29503651141 @default.
- W2950365114 hasRelatedWork W126699435 @default.
- W2950365114 hasRelatedWork W2248620004 @default.
- W2950365114 hasRelatedWork W2312404985 @default.
- W2950365114 hasRelatedWork W2424807480 @default.
- W2950365114 hasRelatedWork W2615195201 @default.
- W2950365114 hasRelatedWork W2615638368 @default.
- W2950365114 hasRelatedWork W2793538214 @default.
- W2950365114 hasRelatedWork W2805287938 @default.
- W2950365114 hasRelatedWork W2921547845 @default.
- W2950365114 hasRelatedWork W2942825528 @default.
- W2950365114 hasRelatedWork W2998449599 @default.
- W2950365114 hasRelatedWork W3004864870 @default.
- W2950365114 hasRelatedWork W3011794420 @default.
- W2950365114 hasRelatedWork W3086302072 @default.
- W2950365114 hasRelatedWork W3120506657 @default.
- W2950365114 hasRelatedWork W3145158287 @default.
- W2950365114 hasRelatedWork W3157251998 @default.
- W2950365114 hasRelatedWork W3169379752 @default.
- W2950365114 hasRelatedWork W3206383369 @default.
- W2950365114 hasRelatedWork W3214095706 @default.
- W2950365114 isParatext "false" @default.
- W2950365114 isRetracted "false" @default.
- W2950365114 magId "2950365114" @default.
- W2950365114 workType "article" @default.