Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950367788> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2950367788 endingPage "260" @default.
- W2950367788 startingPage "236" @default.
- W2950367788 abstract "Abstract For the exterior Dirichlet problems (EDP) of the Helmholtz equation in 2D, when the Sommerfeld radiation condition is satisfied, there always exists the unique solution. Denote the unbounded domain S ∞ outside of a bounded simply-connected domain, where the interior boundary Γ i n is non-circular. The standard MFS is first studied by using the complex Hankel function H 0 ( 1 ) ( k r ) as the fundamental solutions (FS). However, some solutions can not be obtained correctly (e.g., the spurious eigenvalues called). This paper is devoted to explore the spurious eigenvalues and their removals. For the non-circular interior boundary Γ i n , the error analysis is briefly made for the standard MFS, and some guidance is provided to bypass the spurious eigenvalues. Denote two nodes: P = ( ρ , θ ) and Q = ( R , ϕ ) , and r = | P Q ‾ | = R 2 + ρ 2 − 2 R ρ cos ( θ − ϕ ) . To completely eliminate all spurious eigenvalues, we solicit the new combined FS: ( ∂ ∂ R ± i k ) H 0 ( 1 ) ( k r ) with i = − 1 , and propose the new modified MFS. The new algorithms are simple, and the strict analysis may be made. The bounds of errors are derived, and the polynomial convergence rates can be achieved. The bounds of condition numbers are derived for circular Γ ∘ i n only, to display the exponential growth via the number of the new FS used. Numerical experiments are carried to support the analysis made. This paper is the first time for the MFS to explore the spurious eigenvalues and their removals, accompanied with strict analysis of errors and stability." @default.
- W2950367788 created "2019-06-27" @default.
- W2950367788 creator A5009406942 @default.
- W2950367788 creator A5031859692 @default.
- W2950367788 creator A5035820484 @default.
- W2950367788 creator A5048714410 @default.
- W2950367788 date "2019-11-01" @default.
- W2950367788 modified "2023-09-24" @default.
- W2950367788 title "The modified method of fundamental solutions for exterior problems of the Helmholtz equation; spurious eigenvalues and their removals" @default.
- W2950367788 cites W1969715129 @default.
- W2950367788 cites W1970297574 @default.
- W2950367788 cites W1982018344 @default.
- W2950367788 cites W1987931220 @default.
- W2950367788 cites W1996537950 @default.
- W2950367788 cites W1998634309 @default.
- W2950367788 cites W2013483311 @default.
- W2950367788 cites W2044229310 @default.
- W2950367788 cites W2053991170 @default.
- W2950367788 cites W2054304632 @default.
- W2950367788 cites W2064096595 @default.
- W2950367788 cites W2076103001 @default.
- W2950367788 cites W2076450467 @default.
- W2950367788 cites W2078994630 @default.
- W2950367788 cites W2081900403 @default.
- W2950367788 cites W2092252567 @default.
- W2950367788 cites W2100434806 @default.
- W2950367788 cites W2107451829 @default.
- W2950367788 cites W2126022791 @default.
- W2950367788 cites W2410868490 @default.
- W2950367788 cites W2607491808 @default.
- W2950367788 cites W2891133414 @default.
- W2950367788 cites W2916381974 @default.
- W2950367788 cites W2947593871 @default.
- W2950367788 cites W69932122 @default.
- W2950367788 doi "https://doi.org/10.1016/j.apnum.2019.06.008" @default.
- W2950367788 hasPublicationYear "2019" @default.
- W2950367788 type Work @default.
- W2950367788 sameAs 2950367788 @default.
- W2950367788 citedByCount "6" @default.
- W2950367788 countsByYear W29503677882020 @default.
- W2950367788 countsByYear W29503677882021 @default.
- W2950367788 countsByYear W29503677882022 @default.
- W2950367788 crossrefType "journal-article" @default.
- W2950367788 hasAuthorship W2950367788A5009406942 @default.
- W2950367788 hasAuthorship W2950367788A5031859692 @default.
- W2950367788 hasAuthorship W2950367788A5035820484 @default.
- W2950367788 hasAuthorship W2950367788A5048714410 @default.
- W2950367788 hasConcept C105795698 @default.
- W2950367788 hasConcept C121332964 @default.
- W2950367788 hasConcept C134306372 @default.
- W2950367788 hasConcept C158693339 @default.
- W2950367788 hasConcept C182310444 @default.
- W2950367788 hasConcept C18591234 @default.
- W2950367788 hasConcept C28826006 @default.
- W2950367788 hasConcept C33923547 @default.
- W2950367788 hasConcept C62520636 @default.
- W2950367788 hasConcept C97256817 @default.
- W2950367788 hasConceptScore W2950367788C105795698 @default.
- W2950367788 hasConceptScore W2950367788C121332964 @default.
- W2950367788 hasConceptScore W2950367788C134306372 @default.
- W2950367788 hasConceptScore W2950367788C158693339 @default.
- W2950367788 hasConceptScore W2950367788C182310444 @default.
- W2950367788 hasConceptScore W2950367788C18591234 @default.
- W2950367788 hasConceptScore W2950367788C28826006 @default.
- W2950367788 hasConceptScore W2950367788C33923547 @default.
- W2950367788 hasConceptScore W2950367788C62520636 @default.
- W2950367788 hasConceptScore W2950367788C97256817 @default.
- W2950367788 hasFunder F4320321001 @default.
- W2950367788 hasLocation W29503677881 @default.
- W2950367788 hasOpenAccess W2950367788 @default.
- W2950367788 hasPrimaryLocation W29503677881 @default.
- W2950367788 hasRelatedWork W2023285061 @default.
- W2950367788 hasRelatedWork W2054064885 @default.
- W2950367788 hasRelatedWork W2069888238 @default.
- W2950367788 hasRelatedWork W2079622531 @default.
- W2950367788 hasRelatedWork W2080124773 @default.
- W2950367788 hasRelatedWork W2092234892 @default.
- W2950367788 hasRelatedWork W2765426120 @default.
- W2950367788 hasRelatedWork W3101053097 @default.
- W2950367788 hasRelatedWork W3201340880 @default.
- W2950367788 hasRelatedWork W4286971826 @default.
- W2950367788 hasVolume "145" @default.
- W2950367788 isParatext "false" @default.
- W2950367788 isRetracted "false" @default.
- W2950367788 magId "2950367788" @default.
- W2950367788 workType "article" @default.