Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950375307> ?p ?o ?g. }
- W2950375307 abstract "Acquisition of Magnetic Resonance Imaging (MRI) scans can be accelerated by under-sampling in k-space (i.e., the Fourier domain). In this paper, we consider the problem of optimizing the sub-sampling pattern in a data-driven fashion. Since the reconstruction model's performance depends on the sub-sampling pattern, we combine the two problems. For a given sparsity constraint, our method optimizes the sub-sampling pattern and reconstruction model, using an end-to-end learning strategy. Our algorithm learns from full-resolution data that are under-sampled retrospectively, yielding a sub-sampling pattern and reconstruction model that are customized to the type of images represented in the training data. The proposed method, which we call LOUPE (Learning-based Optimization of the Under-sampling PattErn), was implemented by modifying a U-Net, a widely-used convolutional neural network architecture, that we append with the forward model that encodes the under-sampling process. Our experiments with T1-weighted structural brain MRI scans show that the optimized sub-sampling pattern can yield significantly more accurate reconstructions compared to standard random uniform, variable density or equispaced under-sampling schemes. The code is made available at: this https URL ." @default.
- W2950375307 created "2019-06-27" @default.
- W2950375307 creator A5025877936 @default.
- W2950375307 creator A5053586112 @default.
- W2950375307 creator A5091409910 @default.
- W2950375307 date "2019-07-26" @default.
- W2950375307 modified "2023-09-23" @default.
- W2950375307 title "Learning-based Optimization of the Under-sampling Pattern in MRI" @default.
- W2950375307 cites W1482297123 @default.
- W2950375307 cites W1498909268 @default.
- W2950375307 cites W1522301498 @default.
- W2950375307 cites W1557005360 @default.
- W2950375307 cites W1758598986 @default.
- W2950375307 cites W1901129140 @default.
- W2950375307 cites W1972091546 @default.
- W2950375307 cites W1977499513 @default.
- W2950375307 cites W1979954835 @default.
- W2950375307 cites W1985453570 @default.
- W2950375307 cites W2002566598 @default.
- W2950375307 cites W2018706072 @default.
- W2950375307 cites W2029816571 @default.
- W2950375307 cites W2040319606 @default.
- W2950375307 cites W2056775112 @default.
- W2950375307 cites W2057206714 @default.
- W2950375307 cites W2092706821 @default.
- W2950375307 cites W2096669689 @default.
- W2950375307 cites W2099471712 @default.
- W2950375307 cites W2101675075 @default.
- W2950375307 cites W2107906890 @default.
- W2950375307 cites W2110944440 @default.
- W2950375307 cites W2116523778 @default.
- W2950375307 cites W2117649283 @default.
- W2950375307 cites W2119717200 @default.
- W2950375307 cites W2133665775 @default.
- W2950375307 cites W2134033146 @default.
- W2950375307 cites W2141168890 @default.
- W2950375307 cites W2155046324 @default.
- W2950375307 cites W2165142794 @default.
- W2950375307 cites W2167396304 @default.
- W2950375307 cites W2167868121 @default.
- W2950375307 cites W2168399082 @default.
- W2950375307 cites W2168668658 @default.
- W2950375307 cites W2226146394 @default.
- W2950375307 cites W2242818861 @default.
- W2950375307 cites W2304034118 @default.
- W2950375307 cites W2315470063 @default.
- W2950375307 cites W2402144811 @default.
- W2950375307 cites W2547875792 @default.
- W2950375307 cites W2552808051 @default.
- W2950375307 cites W2602076750 @default.
- W2950375307 cites W2604388535 @default.
- W2950375307 cites W2611467245 @default.
- W2950375307 cites W2617883747 @default.
- W2950375307 cites W2621182918 @default.
- W2950375307 cites W2631883531 @default.
- W2950375307 cites W2778924750 @default.
- W2950375307 cites W2785239769 @default.
- W2950375307 cites W2791621240 @default.
- W2950375307 cites W2803224943 @default.
- W2950375307 cites W2900756484 @default.
- W2950375307 cites W2902157451 @default.
- W2950375307 cites W2913221822 @default.
- W2950375307 cites W2915235222 @default.
- W2950375307 cites W2945831440 @default.
- W2950375307 cites W2946092443 @default.
- W2950375307 cites W2946787076 @default.
- W2950375307 cites W2950936580 @default.
- W2950375307 cites W2951004968 @default.
- W2950375307 cites W2951193768 @default.
- W2950375307 cites W2952165242 @default.
- W2950375307 cites W2963439178 @default.
- W2950375307 cites W2963457007 @default.
- W2950375307 cites W2963793388 @default.
- W2950375307 cites W2972672210 @default.
- W2950375307 cites W2980318461 @default.
- W2950375307 cites W2989263382 @default.
- W2950375307 cites W2995286437 @default.
- W2950375307 cites W2995396522 @default.
- W2950375307 cites W3010300843 @default.
- W2950375307 cites W3016108716 @default.
- W2950375307 cites W3018440386 @default.
- W2950375307 cites W3047103180 @default.
- W2950375307 cites W3100220310 @default.
- W2950375307 cites W3100730608 @default.
- W2950375307 cites W3105403262 @default.
- W2950375307 hasPublicationYear "2019" @default.
- W2950375307 type Work @default.
- W2950375307 sameAs 2950375307 @default.
- W2950375307 citedByCount "4" @default.
- W2950375307 countsByYear W29503753072019 @default.
- W2950375307 countsByYear W29503753072020 @default.
- W2950375307 countsByYear W29503753072021 @default.
- W2950375307 crossrefType "posted-content" @default.
- W2950375307 hasAuthorship W2950375307A5025877936 @default.
- W2950375307 hasAuthorship W2950375307A5053586112 @default.
- W2950375307 hasAuthorship W2950375307A5091409910 @default.
- W2950375307 hasConcept C106131492 @default.
- W2950375307 hasConcept C11413529 @default.
- W2950375307 hasConcept C140779682 @default.
- W2950375307 hasConcept C153180895 @default.