Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950376321> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2950376321 abstract "In recent decades, we observed the rapid growth of several big data platforms. Each of them is designed for specific demands. For instance, Spark can efficiently process iterative queries, while Storm is designed for in-memory processing. In this context, the complexity of these distributed systems make it much harder to develop rigorous cost models for query optimization problems. This paper aims to address two problems of the query optimization process: cost estimation and index selection. The cost estimation problem predicts the best execution plan by measuring the cost of alternative query plans. The index selection problem determines the most suitable indexing method with a given dataset. Both problems require the development of a complex function that measures the cost or suitability of alternatives to a specific dataset. Therefore, we employ deep learning to solve those problems due to its capability of learning complicated models. We first address a simple form of cost estimation problem: selectivity estimation. Our preliminary results show that our deep learning models work efficiently with the accuracy of selectivity estimation up to 97%." @default.
- W2950376321 created "2019-06-27" @default.
- W2950376321 creator A5061246132 @default.
- W2950376321 date "2019-06-25" @default.
- W2950376321 modified "2023-09-27" @default.
- W2950376321 title "Deep Query Optimization" @default.
- W2950376321 cites W2100773341 @default.
- W2950376321 cites W2150304332 @default.
- W2950376321 cites W2293896416 @default.
- W2950376321 cites W2900961355 @default.
- W2950376321 cites W2901028997 @default.
- W2950376321 cites W2962771342 @default.
- W2950376321 doi "https://doi.org/10.1145/3299869.3300104" @default.
- W2950376321 hasPublicationYear "2019" @default.
- W2950376321 type Work @default.
- W2950376321 sameAs 2950376321 @default.
- W2950376321 citedByCount "4" @default.
- W2950376321 countsByYear W29503763212020 @default.
- W2950376321 countsByYear W29503763212021 @default.
- W2950376321 crossrefType "proceedings-article" @default.
- W2950376321 hasAuthorship W2950376321A5061246132 @default.
- W2950376321 hasBestOaLocation W29503763211 @default.
- W2950376321 hasConcept C111919701 @default.
- W2950376321 hasConcept C119857082 @default.
- W2950376321 hasConcept C124101348 @default.
- W2950376321 hasConcept C151730666 @default.
- W2950376321 hasConcept C154945302 @default.
- W2950376321 hasConcept C157692150 @default.
- W2950376321 hasConcept C162324750 @default.
- W2950376321 hasConcept C187736073 @default.
- W2950376321 hasConcept C199360897 @default.
- W2950376321 hasConcept C2779343474 @default.
- W2950376321 hasConcept C2781215313 @default.
- W2950376321 hasConcept C41008148 @default.
- W2950376321 hasConcept C75165309 @default.
- W2950376321 hasConcept C75684735 @default.
- W2950376321 hasConcept C81917197 @default.
- W2950376321 hasConcept C86803240 @default.
- W2950376321 hasConcept C93983250 @default.
- W2950376321 hasConcept C98045186 @default.
- W2950376321 hasConceptScore W2950376321C111919701 @default.
- W2950376321 hasConceptScore W2950376321C119857082 @default.
- W2950376321 hasConceptScore W2950376321C124101348 @default.
- W2950376321 hasConceptScore W2950376321C151730666 @default.
- W2950376321 hasConceptScore W2950376321C154945302 @default.
- W2950376321 hasConceptScore W2950376321C157692150 @default.
- W2950376321 hasConceptScore W2950376321C162324750 @default.
- W2950376321 hasConceptScore W2950376321C187736073 @default.
- W2950376321 hasConceptScore W2950376321C199360897 @default.
- W2950376321 hasConceptScore W2950376321C2779343474 @default.
- W2950376321 hasConceptScore W2950376321C2781215313 @default.
- W2950376321 hasConceptScore W2950376321C41008148 @default.
- W2950376321 hasConceptScore W2950376321C75165309 @default.
- W2950376321 hasConceptScore W2950376321C75684735 @default.
- W2950376321 hasConceptScore W2950376321C81917197 @default.
- W2950376321 hasConceptScore W2950376321C86803240 @default.
- W2950376321 hasConceptScore W2950376321C93983250 @default.
- W2950376321 hasConceptScore W2950376321C98045186 @default.
- W2950376321 hasFunder F4320306076 @default.
- W2950376321 hasLocation W29503763211 @default.
- W2950376321 hasOpenAccess W2950376321 @default.
- W2950376321 hasPrimaryLocation W29503763211 @default.
- W2950376321 hasRelatedWork W2043890830 @default.
- W2950376321 hasRelatedWork W2467826469 @default.
- W2950376321 hasRelatedWork W2782959932 @default.
- W2950376321 hasRelatedWork W2790778417 @default.
- W2950376321 hasRelatedWork W2963898694 @default.
- W2950376321 hasRelatedWork W3008487931 @default.
- W2950376321 hasRelatedWork W3014300295 @default.
- W2950376321 hasRelatedWork W3042699812 @default.
- W2950376321 hasRelatedWork W3205795685 @default.
- W2950376321 hasRelatedWork W4287083217 @default.
- W2950376321 isParatext "false" @default.
- W2950376321 isRetracted "false" @default.
- W2950376321 magId "2950376321" @default.
- W2950376321 workType "article" @default.