Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950382171> ?p ?o ?g. }
- W2950382171 abstract "In this paper, we study data-dependent generalization error bounds exhibiting a mild dependency on the number of classes, making them suitable for multi-class learning with a large number of label classes. The bounds generally hold for empirical multi-class risk minimization algorithms using an arbitrary norm as regularizer. Key to our analysis are new structural results for multi-class Gaussian complexities and empirical $ell_infty$-norm covering numbers, which exploit the Lipschitz continuity of the loss function with respect to the $ell_2$- and $ell_infty$-norm, respectively. We establish data-dependent error bounds in terms of complexities of a linear function class defined on a finite set induced by training examples, for which we show tight lower and upper bounds. We apply the results to several prominent multi-class learning machines, exhibiting a tighter dependency on the number of classes than the state of the art. For instance, for the multi-class SVM by Crammer and Singer (2002), we obtain a data-dependent bound with a logarithmic dependency which significantly improves the previous square-root dependency. Experimental results are reported to verify the effectiveness of our theoretical findings." @default.
- W2950382171 created "2019-06-27" @default.
- W2950382171 creator A5006802589 @default.
- W2950382171 creator A5046468616 @default.
- W2950382171 creator A5086993787 @default.
- W2950382171 creator A5091841504 @default.
- W2950382171 date "2017-06-29" @default.
- W2950382171 modified "2023-09-26" @default.
- W2950382171 title "Data-dependent Generalization Bounds for Multi-class Classification" @default.
- W2950382171 cites W1544839292 @default.
- W2950382171 cites W1550206324 @default.
- W2950382171 cites W1569616332 @default.
- W2950382171 cites W1608733719 @default.
- W2950382171 cites W1663973292 @default.
- W2950382171 cites W1698155719 @default.
- W2950382171 cites W1895356522 @default.
- W2950382171 cites W1940008012 @default.
- W2950382171 cites W1944672 @default.
- W2950382171 cites W1968436459 @default.
- W2950382171 cites W1984876737 @default.
- W2950382171 cites W1992736075 @default.
- W2950382171 cites W1994642189 @default.
- W2950382171 cites W2000655290 @default.
- W2950382171 cites W2000908731 @default.
- W2950382171 cites W2001619934 @default.
- W2950382171 cites W2021440127 @default.
- W2950382171 cites W2029538739 @default.
- W2950382171 cites W2029922822 @default.
- W2950382171 cites W2056625421 @default.
- W2950382171 cites W2068074736 @default.
- W2950382171 cites W2069754508 @default.
- W2950382171 cites W2087258353 @default.
- W2950382171 cites W2105463715 @default.
- W2950382171 cites W2108598243 @default.
- W2950382171 cites W2111377143 @default.
- W2950382171 cites W2112274905 @default.
- W2950382171 cites W2112528242 @default.
- W2950382171 cites W2112531253 @default.
- W2950382171 cites W2112796928 @default.
- W2950382171 cites W2115046017 @default.
- W2950382171 cites W2116444583 @default.
- W2950382171 cites W2136885855 @default.
- W2950382171 cites W2145862222 @default.
- W2950382171 cites W2148126650 @default.
- W2950382171 cites W2150102617 @default.
- W2950382171 cites W2151211319 @default.
- W2950382171 cites W2153635508 @default.
- W2950382171 cites W2155144632 @default.
- W2950382171 cites W2157791002 @default.
- W2950382171 cites W2168645005 @default.
- W2950382171 cites W2172000360 @default.
- W2950382171 cites W2198114369 @default.
- W2950382171 cites W2282078507 @default.
- W2950382171 cites W2362855512 @default.
- W2950382171 cites W2472904648 @default.
- W2950382171 cites W2515754823 @default.
- W2950382171 cites W2517520041 @default.
- W2950382171 cites W2558151686 @default.
- W2950382171 cites W2579923771 @default.
- W2950382171 cites W2580921317 @default.
- W2950382171 cites W2950015320 @default.
- W2950382171 cites W2950853365 @default.
- W2950382171 cites W2951922486 @default.
- W2950382171 cites W2952817049 @default.
- W2950382171 cites W2963203807 @default.
- W2950382171 cites W2963880114 @default.
- W2950382171 cites W2963899139 @default.
- W2950382171 cites W3013820469 @default.
- W2950382171 cites W3120740533 @default.
- W2950382171 cites W756166754 @default.
- W2950382171 cites W905619 @default.
- W2950382171 doi "https://doi.org/10.48550/arxiv.1706.09814" @default.
- W2950382171 hasPublicationYear "2017" @default.
- W2950382171 type Work @default.
- W2950382171 sameAs 2950382171 @default.
- W2950382171 citedByCount "0" @default.
- W2950382171 crossrefType "posted-content" @default.
- W2950382171 hasAuthorship W2950382171A5006802589 @default.
- W2950382171 hasAuthorship W2950382171A5046468616 @default.
- W2950382171 hasAuthorship W2950382171A5086993787 @default.
- W2950382171 hasAuthorship W2950382171A5091841504 @default.
- W2950382171 hasBestOaLocation W29503821711 @default.
- W2950382171 hasConcept C107321475 @default.
- W2950382171 hasConcept C11413529 @default.
- W2950382171 hasConcept C118615104 @default.
- W2950382171 hasConcept C121332964 @default.
- W2950382171 hasConcept C126255220 @default.
- W2950382171 hasConcept C134306372 @default.
- W2950382171 hasConcept C14036430 @default.
- W2950382171 hasConcept C154945302 @default.
- W2950382171 hasConcept C163716315 @default.
- W2950382171 hasConcept C177148314 @default.
- W2950382171 hasConcept C17744445 @default.
- W2950382171 hasConcept C191795146 @default.
- W2950382171 hasConcept C19768560 @default.
- W2950382171 hasConcept C199539241 @default.
- W2950382171 hasConcept C202444582 @default.
- W2950382171 hasConcept C22324862 @default.
- W2950382171 hasConcept C2777212361 @default.
- W2950382171 hasConcept C33923547 @default.