Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950383934> ?p ?o ?g. }
- W2950383934 endingPage "100101" @default.
- W2950383934 startingPage "100101" @default.
- W2950383934 abstract "Abstract Recent literature on highway safety research has focused on methodological advances to minimize misspecifications and the potential for erroneous estimates and invalid statistical inferences. To further these efforts, this study carries out an empirical assessment of uncorrelated and correlated random-parameters count models for analyzing road crash frequencies on multilane highways considering two crash severities; injury and no-injury. The empirical results indicate that the relative statistical performance of these models is comparable; however, the correlated random-parameters approach accounts for both the heterogeneous effects of explanatory factors across the road segments and the cross-correlations among the random-parameter estimates. As noted in the results, statistically significant correlation effects among the random parameters confirm the adequacy of this approach. The safety models for multilane highways presented in this study can be useful in (i) the detection of critical risk factors on these road types, (ii) the assessment of crash reduction due to improvements in pavement condition and retrofitting of roadway geometric features and, (iii) the prediction of crash frequency while comparing different design alternatives. As such, the outcomes of this study may assist design engineers and highway agencies in designing new or calibrating existing multilane highways from a safety standpoint." @default.
- W2950383934 created "2019-06-27" @default.
- W2950383934 creator A5003786536 @default.
- W2950383934 creator A5035102363 @default.
- W2950383934 creator A5039012333 @default.
- W2950383934 creator A5075653783 @default.
- W2950383934 date "2019-09-01" @default.
- W2950383934 modified "2023-10-12" @default.
- W2950383934 title "Analyzing road crash frequencies with uncorrelated and correlated random-parameters count models: An empirical assessment of multilane highways" @default.
- W2950383934 cites W1137507182 @default.
- W2950383934 cites W1894717885 @default.
- W2950383934 cites W1943119028 @default.
- W2950383934 cites W1950018093 @default.
- W2950383934 cites W1976556551 @default.
- W2950383934 cites W1976961608 @default.
- W2950383934 cites W1980399291 @default.
- W2950383934 cites W1981009076 @default.
- W2950383934 cites W1984689476 @default.
- W2950383934 cites W1985766155 @default.
- W2950383934 cites W1991250398 @default.
- W2950383934 cites W1991478879 @default.
- W2950383934 cites W1995541974 @default.
- W2950383934 cites W2000501557 @default.
- W2950383934 cites W2008092706 @default.
- W2950383934 cites W2008909284 @default.
- W2950383934 cites W2017001763 @default.
- W2950383934 cites W2017927372 @default.
- W2950383934 cites W2028400898 @default.
- W2950383934 cites W2034082210 @default.
- W2950383934 cites W2034306099 @default.
- W2950383934 cites W2036197159 @default.
- W2950383934 cites W2036619968 @default.
- W2950383934 cites W2042640294 @default.
- W2950383934 cites W2042741039 @default.
- W2950383934 cites W2044657894 @default.
- W2950383934 cites W2047892750 @default.
- W2950383934 cites W2051779190 @default.
- W2950383934 cites W2054427889 @default.
- W2950383934 cites W2063584172 @default.
- W2950383934 cites W2071002535 @default.
- W2950383934 cites W2076978163 @default.
- W2950383934 cites W2088341448 @default.
- W2950383934 cites W2105793079 @default.
- W2950383934 cites W2122596006 @default.
- W2950383934 cites W2127991156 @default.
- W2950383934 cites W2132422289 @default.
- W2950383934 cites W2132735659 @default.
- W2950383934 cites W2140908056 @default.
- W2950383934 cites W2148619402 @default.
- W2950383934 cites W2149683696 @default.
- W2950383934 cites W2152046803 @default.
- W2950383934 cites W2162776726 @default.
- W2950383934 cites W2179490176 @default.
- W2950383934 cites W2190230032 @default.
- W2950383934 cites W2343811890 @default.
- W2950383934 cites W2462501661 @default.
- W2950383934 cites W2464847497 @default.
- W2950383934 cites W2496157789 @default.
- W2950383934 cites W2577559387 @default.
- W2950383934 cites W2608744881 @default.
- W2950383934 cites W2614954172 @default.
- W2950383934 cites W2621799513 @default.
- W2950383934 cites W2682367792 @default.
- W2950383934 cites W2750077433 @default.
- W2950383934 cites W2752444931 @default.
- W2950383934 cites W2755794876 @default.
- W2950383934 cites W2760702802 @default.
- W2950383934 cites W2766253148 @default.
- W2950383934 cites W2791040474 @default.
- W2950383934 cites W2791185793 @default.
- W2950383934 cites W2800307786 @default.
- W2950383934 cites W2802908984 @default.
- W2950383934 cites W2804528990 @default.
- W2950383934 cites W2810456310 @default.
- W2950383934 cites W2861781221 @default.
- W2950383934 cites W2885898917 @default.
- W2950383934 cites W2886873592 @default.
- W2950383934 cites W2889787549 @default.
- W2950383934 cites W2891869937 @default.
- W2950383934 cites W2896854717 @default.
- W2950383934 cites W2899423609 @default.
- W2950383934 cites W2901672822 @default.
- W2950383934 cites W2908389900 @default.
- W2950383934 cites W2911469091 @default.
- W2950383934 cites W2915347024 @default.
- W2950383934 cites W2932518173 @default.
- W2950383934 cites W2940333097 @default.
- W2950383934 cites W3021114543 @default.
- W2950383934 cites W1982380508 @default.
- W2950383934 cites W2770279421 @default.
- W2950383934 doi "https://doi.org/10.1016/j.amar.2019.100101" @default.
- W2950383934 hasPublicationYear "2019" @default.
- W2950383934 type Work @default.
- W2950383934 sameAs 2950383934 @default.
- W2950383934 citedByCount "68" @default.
- W2950383934 countsByYear W29503839342019 @default.
- W2950383934 countsByYear W29503839342020 @default.
- W2950383934 countsByYear W29503839342021 @default.