Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950386964> ?p ?o ?g. }
- W2950386964 abstract "Outdoor air pollution is a major killer worldwide and the fourth largest contributor to the burden of disease in China. China is the most populous country in the world and also has the largest number of air pollution deaths per year, yet the spatial resolution of existing national air pollution estimates for China is generally relatively low. We address this knowledge gap by developing and evaluating national empirical models for China incorporating land-use regression (LUR), satellite measurements, and universal kriging (UK). We test the resulting models in several ways, including (1) comparing models developed using forward stepwise regression vs. partial least squares (PLS) regression, (2) comparing models developed with and without satellite measurements, and with and without UK, and (3) 10-fold cross-validation (CV), leave-one-province-out(LOPO) CV, and leave-one-city-out(LOCO) CV. Satellite data and kriging are complementary in making predictions more accurate: kriging improved the models in well-sampled areas; satellite data substantially improved performance at locations far away from monitors. Stepwise forward selection performs similarly to PLS in 10-fold CV, but better than PLS in LOPO-CV. Our best models employ forward selection and UK, with 10-fold CV R2 of 0.89 (for both 2014 and 2015) for PM2.5 and of 0.73 (year-2014) and 0.78 (year-2015) for NO2. Population-weighted concentrations during 2014-2015 decreased for PM2.5 (58.7 {mu}g/m3 to 52.3 {mu}g/m3) and NO2 (29.6 {mu}g/m3 to 26.8 {mu}g/m3). We produced the first high resolution national LUR models for annual-average concentrations in China. Models were applied on 1 km grid to support future research. In 2015, more than 80% of the Chinese population lived in areas that exceed the Chinese national PM2.5 standard, 35 {mu}g/m3. Results here will be publicly available and may be useful for environmental health research." @default.
- W2950386964 created "2019-06-27" @default.
- W2950386964 creator A5000532123 @default.
- W2950386964 creator A5019516275 @default.
- W2950386964 creator A5022883128 @default.
- W2950386964 creator A5032517344 @default.
- W2950386964 creator A5036726873 @default.
- W2950386964 creator A5046685365 @default.
- W2950386964 creator A5050225100 @default.
- W2950386964 date "2018-08-28" @default.
- W2950386964 modified "2023-09-26" @default.
- W2950386964 title "National PM2.5 and NO2 Exposure Models for China Based on Land Use Regression, Satellite Measurements, and Universal Kriging" @default.
- W2950386964 cites W1517808374 @default.
- W2950386964 cites W1880032417 @default.
- W2950386964 cites W1941932290 @default.
- W2950386964 cites W1967297182 @default.
- W2950386964 cites W1983132585 @default.
- W2950386964 cites W1993983873 @default.
- W2950386964 cites W2001510610 @default.
- W2950386964 cites W2010061208 @default.
- W2950386964 cites W2012965359 @default.
- W2950386964 cites W2031528200 @default.
- W2950386964 cites W2047607205 @default.
- W2950386964 cites W2057829983 @default.
- W2950386964 cites W2070191323 @default.
- W2950386964 cites W2084554826 @default.
- W2950386964 cites W2090726311 @default.
- W2950386964 cites W2098637521 @default.
- W2950386964 cites W2102906305 @default.
- W2950386964 cites W2119019979 @default.
- W2950386964 cites W2121745948 @default.
- W2950386964 cites W2154589423 @default.
- W2950386964 cites W2168634228 @default.
- W2950386964 cites W2233873426 @default.
- W2950386964 cites W2255459106 @default.
- W2950386964 cites W2288470020 @default.
- W2950386964 cites W2291282024 @default.
- W2950386964 cites W2310114729 @default.
- W2950386964 cites W2312602772 @default.
- W2950386964 cites W2399184460 @default.
- W2950386964 cites W2399239317 @default.
- W2950386964 cites W2419137754 @default.
- W2950386964 cites W2560278092 @default.
- W2950386964 cites W2588050314 @default.
- W2950386964 cites W2588978790 @default.
- W2950386964 cites W2589460290 @default.
- W2950386964 cites W2605745243 @default.
- W2950386964 cites W2606716674 @default.
- W2950386964 cites W2776069591 @default.
- W2950386964 cites W2792404378 @default.
- W2950386964 doi "https://doi.org/10.48550/arxiv.1808.09126" @default.
- W2950386964 hasPublicationYear "2018" @default.
- W2950386964 type Work @default.
- W2950386964 sameAs 2950386964 @default.
- W2950386964 citedByCount "0" @default.
- W2950386964 crossrefType "posted-content" @default.
- W2950386964 hasAuthorship W2950386964A5000532123 @default.
- W2950386964 hasAuthorship W2950386964A5019516275 @default.
- W2950386964 hasAuthorship W2950386964A5022883128 @default.
- W2950386964 hasAuthorship W2950386964A5032517344 @default.
- W2950386964 hasAuthorship W2950386964A5036726873 @default.
- W2950386964 hasAuthorship W2950386964A5046685365 @default.
- W2950386964 hasAuthorship W2950386964A5050225100 @default.
- W2950386964 hasBestOaLocation W29503869641 @default.
- W2950386964 hasConcept C105795698 @default.
- W2950386964 hasConcept C127413603 @default.
- W2950386964 hasConcept C146978453 @default.
- W2950386964 hasConcept C152877465 @default.
- W2950386964 hasConcept C166957645 @default.
- W2950386964 hasConcept C170964787 @default.
- W2950386964 hasConcept C18903297 @default.
- W2950386964 hasConcept C191935318 @default.
- W2950386964 hasConcept C19269812 @default.
- W2950386964 hasConcept C205649164 @default.
- W2950386964 hasConcept C22354355 @default.
- W2950386964 hasConcept C33923547 @default.
- W2950386964 hasConcept C39432304 @default.
- W2950386964 hasConcept C48921125 @default.
- W2950386964 hasConcept C521259446 @default.
- W2950386964 hasConcept C559116025 @default.
- W2950386964 hasConcept C81692654 @default.
- W2950386964 hasConcept C83546350 @default.
- W2950386964 hasConcept C86803240 @default.
- W2950386964 hasConceptScore W2950386964C105795698 @default.
- W2950386964 hasConceptScore W2950386964C127413603 @default.
- W2950386964 hasConceptScore W2950386964C146978453 @default.
- W2950386964 hasConceptScore W2950386964C152877465 @default.
- W2950386964 hasConceptScore W2950386964C166957645 @default.
- W2950386964 hasConceptScore W2950386964C170964787 @default.
- W2950386964 hasConceptScore W2950386964C18903297 @default.
- W2950386964 hasConceptScore W2950386964C191935318 @default.
- W2950386964 hasConceptScore W2950386964C19269812 @default.
- W2950386964 hasConceptScore W2950386964C205649164 @default.
- W2950386964 hasConceptScore W2950386964C22354355 @default.
- W2950386964 hasConceptScore W2950386964C33923547 @default.
- W2950386964 hasConceptScore W2950386964C39432304 @default.
- W2950386964 hasConceptScore W2950386964C48921125 @default.
- W2950386964 hasConceptScore W2950386964C521259446 @default.
- W2950386964 hasConceptScore W2950386964C559116025 @default.
- W2950386964 hasConceptScore W2950386964C81692654 @default.