Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950390931> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2950390931 abstract "In the context of deformation quantization, there exist various procedures to deal with the quantization of a reduced space M_red. We shall be concerned here mainly with the classical Marsden-Weinstein reduction, assuming that we have a proper action of a Lie group G on a Poisson manifold M, with a moment map J for which zero is a regular value. For the quantization, we follow [BHW] (with a simplified approach) and build a star product *_red on M_red from a strongly invariant star product * on M. The new questions which are addressed in this paper concern the existence of natural *-involutions on the reduced quantum algebra and the representation theory for such a reduced *-algebra. We assume that * is Hermitian and we show that the choice of a formal series of smooth densities on the embedded coisotropic submanifold C = J^{-1}(0), with some equivariance property, defines a *-involution for *_red on the reduced space. Looking into the question whether the corresponding *-involution is the complex conjugation (which is a *-involution in the Marsden-Weinstein context) yields a new notion of quantized unimodular class. We introduce a left *-submodule and a right *_red-submodule C^infty_cf(C)[[lambda]] of C^infty(C)[[lambda]]; we define on it a C^infty(M_red)[[lambda]]-valued inner product and we establish that this gives a strong Morita equivalence bimodule between C^infty(M_red)[[lambda]] and the finite rank operators on C^inftycf(C)[[lambda]]. The crucial point is here to show the complete positivity of the inner product. We obtain a Rieffel induction functor from the strongly non-degenerate *-representations of (C^infty(M_red)[[lambda]], *_red) on pre-Hilbert right D-modules to those of (C^infty(M)[[lambda]], *), for any auxiliary coefficient *-algebra D over mathbb{C}[[lambda]]." @default.
- W2950390931 created "2019-06-27" @default.
- W2950390931 creator A5007294217 @default.
- W2950390931 creator A5070086843 @default.
- W2950390931 date "2009-11-09" @default.
- W2950390931 modified "2023-09-27" @default.
- W2950390931 title "Involutions and Representations for Reduced Quantum Algebras" @default.
- W2950390931 cites W123439666 @default.
- W2950390931 cites W1523213245 @default.
- W2950390931 cites W1577431998 @default.
- W2950390931 cites W1582975869 @default.
- W2950390931 cites W1586369843 @default.
- W2950390931 cites W1588100634 @default.
- W2950390931 cites W1606213083 @default.
- W2950390931 cites W1635803731 @default.
- W2950390931 cites W1974547277 @default.
- W2950390931 cites W1987671612 @default.
- W2950390931 cites W1998161206 @default.
- W2950390931 cites W2002759309 @default.
- W2950390931 cites W2025344780 @default.
- W2950390931 cites W2039379574 @default.
- W2950390931 cites W2045400494 @default.
- W2950390931 cites W2059831974 @default.
- W2950390931 cites W2071313404 @default.
- W2950390931 cites W2073455312 @default.
- W2950390931 cites W2088467362 @default.
- W2950390931 cites W2388487899 @default.
- W2950390931 cites W2593618184 @default.
- W2950390931 cites W2593873342 @default.
- W2950390931 cites W2963023176 @default.
- W2950390931 cites W3101711748 @default.
- W2950390931 cites W3104786246 @default.
- W2950390931 cites W93270733 @default.
- W2950390931 hasPublicationYear "2009" @default.
- W2950390931 type Work @default.
- W2950390931 sameAs 2950390931 @default.
- W2950390931 citedByCount "0" @default.
- W2950390931 crossrefType "posted-content" @default.
- W2950390931 hasAuthorship W2950390931A5007294217 @default.
- W2950390931 hasAuthorship W2950390931A5070086843 @default.
- W2950390931 hasConcept C121332964 @default.
- W2950390931 hasConcept C135658033 @default.
- W2950390931 hasConcept C136119220 @default.
- W2950390931 hasConcept C202444582 @default.
- W2950390931 hasConcept C2778113609 @default.
- W2950390931 hasConcept C33923547 @default.
- W2950390931 hasConcept C51568863 @default.
- W2950390931 hasConcept C62520636 @default.
- W2950390931 hasConceptScore W2950390931C121332964 @default.
- W2950390931 hasConceptScore W2950390931C135658033 @default.
- W2950390931 hasConceptScore W2950390931C136119220 @default.
- W2950390931 hasConceptScore W2950390931C202444582 @default.
- W2950390931 hasConceptScore W2950390931C2778113609 @default.
- W2950390931 hasConceptScore W2950390931C33923547 @default.
- W2950390931 hasConceptScore W2950390931C51568863 @default.
- W2950390931 hasConceptScore W2950390931C62520636 @default.
- W2950390931 hasLocation W29503909311 @default.
- W2950390931 hasOpenAccess W2950390931 @default.
- W2950390931 hasPrimaryLocation W29503909311 @default.
- W2950390931 hasRelatedWork W1522996085 @default.
- W2950390931 hasRelatedWork W1651156409 @default.
- W2950390931 hasRelatedWork W1667956576 @default.
- W2950390931 hasRelatedWork W1984304758 @default.
- W2950390931 hasRelatedWork W2052512727 @default.
- W2950390931 hasRelatedWork W2083474360 @default.
- W2950390931 hasRelatedWork W2089136208 @default.
- W2950390931 hasRelatedWork W2147059495 @default.
- W2950390931 hasRelatedWork W2168704147 @default.
- W2950390931 hasRelatedWork W2171524139 @default.
- W2950390931 hasRelatedWork W2346974592 @default.
- W2950390931 hasRelatedWork W2950018062 @default.
- W2950390931 hasRelatedWork W2950116095 @default.
- W2950390931 hasRelatedWork W2951993285 @default.
- W2950390931 hasRelatedWork W2952982417 @default.
- W2950390931 hasRelatedWork W2963148955 @default.
- W2950390931 hasRelatedWork W2964241065 @default.
- W2950390931 hasRelatedWork W3098607373 @default.
- W2950390931 hasRelatedWork W3129295021 @default.
- W2950390931 hasRelatedWork W1976624681 @default.
- W2950390931 isParatext "false" @default.
- W2950390931 isRetracted "false" @default.
- W2950390931 magId "2950390931" @default.
- W2950390931 workType "article" @default.