Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950440169> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2950440169 endingPage "160" @default.
- W2950440169 startingPage "125" @default.
- W2950440169 abstract "Machine learning has played an important role in the last decade mainly in natural language processing, image processing and speech recognition where it has performed well in comparison to the classical rule based approach. The machine learning approach has been used in cyber security use cases namely, intrusion detection, malware analysis, traffic analysis, spam and phishing detection etc. Recently, the advancement of machine learning typically called as ‘deep learning’ outperformed humans in several long standing artificial intelligence tasks. Deep learning has the capability to learn optimal feature representation by itself and more robust in an adversarial environment in compared to classical machine learning algorithms. This approach is in early stage in cyber security. In this work, to leverage the application of deep learning architectures towards cyber security, we consider intrusion detection, traffic analysis and Android malware detection. In all the experiments of intrusion detection, deep learning architectures performed well in compared to classical machine learning algorithms. Moreover, deep learning architectures have achieved good performance in traffic analysis and Android malware detection too." @default.
- W2950440169 created "2019-06-27" @default.
- W2950440169 creator A5006204845 @default.
- W2950440169 creator A5014162948 @default.
- W2950440169 creator A5029900047 @default.
- W2950440169 creator A5040100735 @default.
- W2950440169 date "2019-01-01" @default.
- W2950440169 modified "2023-10-10" @default.
- W2950440169 title "Application of Deep Learning Architectures for Cyber Security" @default.
- W2950440169 cites W1545764953 @default.
- W2950440169 cites W162146437 @default.
- W2950440169 cites W1901616594 @default.
- W2950440169 cites W1966809779 @default.
- W2950440169 cites W2034265047 @default.
- W2950440169 cites W2085305295 @default.
- W2950440169 cites W2099940443 @default.
- W2950440169 cites W2100537916 @default.
- W2950440169 cites W2111409981 @default.
- W2950440169 cites W2113766921 @default.
- W2950440169 cites W2144870254 @default.
- W2950440169 cites W2215862420 @default.
- W2950440169 cites W2296509296 @default.
- W2950440169 cites W2335999708 @default.
- W2950440169 cites W2342408547 @default.
- W2950440169 cites W2399941526 @default.
- W2950440169 cites W2599823825 @default.
- W2950440169 cites W2771399008 @default.
- W2950440169 cites W2771644755 @default.
- W2950440169 cites W2772129543 @default.
- W2950440169 cites W2772633862 @default.
- W2950440169 cites W2772660489 @default.
- W2950440169 cites W2773456774 @default.
- W2950440169 cites W2775103799 @default.
- W2950440169 cites W2775696952 @default.
- W2950440169 cites W2781869818 @default.
- W2950440169 cites W2791078573 @default.
- W2950440169 cites W2792815878 @default.
- W2950440169 cites W2797425850 @default.
- W2950440169 cites W2886922730 @default.
- W2950440169 cites W2899776223 @default.
- W2950440169 cites W2900150361 @default.
- W2950440169 cites W2919115771 @default.
- W2950440169 cites W3144134378 @default.
- W2950440169 cites W4245460974 @default.
- W2950440169 doi "https://doi.org/10.1007/978-3-030-16837-7_7" @default.
- W2950440169 hasPublicationYear "2019" @default.
- W2950440169 type Work @default.
- W2950440169 sameAs 2950440169 @default.
- W2950440169 citedByCount "10" @default.
- W2950440169 countsByYear W29504401692020 @default.
- W2950440169 countsByYear W29504401692022 @default.
- W2950440169 countsByYear W29504401692023 @default.
- W2950440169 crossrefType "book-chapter" @default.
- W2950440169 hasAuthorship W2950440169A5006204845 @default.
- W2950440169 hasAuthorship W2950440169A5014162948 @default.
- W2950440169 hasAuthorship W2950440169A5029900047 @default.
- W2950440169 hasAuthorship W2950440169A5040100735 @default.
- W2950440169 hasConcept C108583219 @default.
- W2950440169 hasConcept C119857082 @default.
- W2950440169 hasConcept C154945302 @default.
- W2950440169 hasConcept C2778403875 @default.
- W2950440169 hasConcept C2989133298 @default.
- W2950440169 hasConcept C35525427 @default.
- W2950440169 hasConcept C38652104 @default.
- W2950440169 hasConcept C41008148 @default.
- W2950440169 hasConcept C541664917 @default.
- W2950440169 hasConcept C59404180 @default.
- W2950440169 hasConceptScore W2950440169C108583219 @default.
- W2950440169 hasConceptScore W2950440169C119857082 @default.
- W2950440169 hasConceptScore W2950440169C154945302 @default.
- W2950440169 hasConceptScore W2950440169C2778403875 @default.
- W2950440169 hasConceptScore W2950440169C2989133298 @default.
- W2950440169 hasConceptScore W2950440169C35525427 @default.
- W2950440169 hasConceptScore W2950440169C38652104 @default.
- W2950440169 hasConceptScore W2950440169C41008148 @default.
- W2950440169 hasConceptScore W2950440169C541664917 @default.
- W2950440169 hasConceptScore W2950440169C59404180 @default.
- W2950440169 hasLocation W29504401691 @default.
- W2950440169 hasOpenAccess W2950440169 @default.
- W2950440169 hasPrimaryLocation W29504401691 @default.
- W2950440169 hasRelatedWork W2311926078 @default.
- W2950440169 hasRelatedWork W2462192250 @default.
- W2950440169 hasRelatedWork W2507113366 @default.
- W2950440169 hasRelatedWork W2560361988 @default.
- W2950440169 hasRelatedWork W2782775281 @default.
- W2950440169 hasRelatedWork W3016972006 @default.
- W2950440169 hasRelatedWork W3025122950 @default.
- W2950440169 hasRelatedWork W3200508744 @default.
- W2950440169 hasRelatedWork W4327939473 @default.
- W2950440169 hasRelatedWork W4382940931 @default.
- W2950440169 isParatext "false" @default.
- W2950440169 isRetracted "false" @default.
- W2950440169 magId "2950440169" @default.
- W2950440169 workType "book-chapter" @default.