Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950456445> ?p ?o ?g. }
- W2950456445 abstract "Given a tree T on n vertices, there is an associated ideal I of a polynomial ring in n variables over a field, generated by all paths of a fixed length of T. We show that such an ideal always satisfies the Konig property and classify all trees for which R/I is Cohen-Macaulay. More generally, we show that an ideal I whose generators correspond to any collection of subtrees of T satisfies the Konig property. Since the edge ideal of a simplicial tree has this form, this generalizes a result of Faridi. Moreover, every square-free monomial ideal can be represented (non-uniquely) as a subtree ideal of a graph, so this construction provides a new combinatorial tool for studying square-free monomial ideals. For a special class of trees, namely trees that are themselves a path, a precise formula for the depth is given and it is shown that the proof extends to provide a lower bound on the Stanley depth of these ideals. Combining these results gives a new class of ideals for which the Stanley Conjecture holds." @default.
- W2950456445 created "2019-06-27" @default.
- W2950456445 creator A5006067529 @default.
- W2950456445 creator A5015360975 @default.
- W2950456445 creator A5048708318 @default.
- W2950456445 creator A5054249102 @default.
- W2950456445 creator A5073377472 @default.
- W2950456445 date "2012-11-20" @default.
- W2950456445 modified "2023-09-25" @default.
- W2950456445 title "Depths and Cohen-Macaulay Properties of Path Ideals" @default.
- W2950456445 cites W1519801683 @default.
- W2950456445 cites W1964302223 @default.
- W2950456445 cites W1977182256 @default.
- W2950456445 cites W1977775383 @default.
- W2950456445 cites W1988302763 @default.
- W2950456445 cites W1992202796 @default.
- W2950456445 cites W1995950617 @default.
- W2950456445 cites W2018130134 @default.
- W2950456445 cites W2033625637 @default.
- W2950456445 cites W2051206167 @default.
- W2950456445 cites W2068215617 @default.
- W2950456445 cites W2069493806 @default.
- W2950456445 cites W2087231306 @default.
- W2950456445 cites W2089328508 @default.
- W2950456445 cites W2101535655 @default.
- W2950456445 cites W2121929025 @default.
- W2950456445 cites W2123683447 @default.
- W2950456445 cites W2171261491 @default.
- W2950456445 cites W2795317456 @default.
- W2950456445 cites W2799004609 @default.
- W2950456445 cites W2962992781 @default.
- W2950456445 cites W2964312789 @default.
- W2950456445 hasPublicationYear "2012" @default.
- W2950456445 type Work @default.
- W2950456445 sameAs 2950456445 @default.
- W2950456445 citedByCount "0" @default.
- W2950456445 crossrefType "posted-content" @default.
- W2950456445 hasAuthorship W2950456445A5006067529 @default.
- W2950456445 hasAuthorship W2950456445A5015360975 @default.
- W2950456445 hasAuthorship W2950456445A5048708318 @default.
- W2950456445 hasAuthorship W2950456445A5054249102 @default.
- W2950456445 hasAuthorship W2950456445A5073377472 @default.
- W2950456445 hasConcept C111472728 @default.
- W2950456445 hasConcept C11252640 @default.
- W2950456445 hasConcept C113174947 @default.
- W2950456445 hasConcept C114614502 @default.
- W2950456445 hasConcept C118615104 @default.
- W2950456445 hasConcept C134306372 @default.
- W2950456445 hasConcept C135692309 @default.
- W2950456445 hasConcept C138885662 @default.
- W2950456445 hasConcept C154945302 @default.
- W2950456445 hasConcept C188139237 @default.
- W2950456445 hasConcept C199360897 @default.
- W2950456445 hasConcept C2524010 @default.
- W2950456445 hasConcept C2776639384 @default.
- W2950456445 hasConcept C2777212361 @default.
- W2950456445 hasConcept C2777735758 @default.
- W2950456445 hasConcept C2777789435 @default.
- W2950456445 hasConcept C2780990831 @default.
- W2950456445 hasConcept C33923547 @default.
- W2950456445 hasConcept C41008148 @default.
- W2950456445 hasConcept C90119067 @default.
- W2950456445 hasConcept C9485509 @default.
- W2950456445 hasConceptScore W2950456445C111472728 @default.
- W2950456445 hasConceptScore W2950456445C11252640 @default.
- W2950456445 hasConceptScore W2950456445C113174947 @default.
- W2950456445 hasConceptScore W2950456445C114614502 @default.
- W2950456445 hasConceptScore W2950456445C118615104 @default.
- W2950456445 hasConceptScore W2950456445C134306372 @default.
- W2950456445 hasConceptScore W2950456445C135692309 @default.
- W2950456445 hasConceptScore W2950456445C138885662 @default.
- W2950456445 hasConceptScore W2950456445C154945302 @default.
- W2950456445 hasConceptScore W2950456445C188139237 @default.
- W2950456445 hasConceptScore W2950456445C199360897 @default.
- W2950456445 hasConceptScore W2950456445C2524010 @default.
- W2950456445 hasConceptScore W2950456445C2776639384 @default.
- W2950456445 hasConceptScore W2950456445C2777212361 @default.
- W2950456445 hasConceptScore W2950456445C2777735758 @default.
- W2950456445 hasConceptScore W2950456445C2777789435 @default.
- W2950456445 hasConceptScore W2950456445C2780990831 @default.
- W2950456445 hasConceptScore W2950456445C33923547 @default.
- W2950456445 hasConceptScore W2950456445C41008148 @default.
- W2950456445 hasConceptScore W2950456445C90119067 @default.
- W2950456445 hasConceptScore W2950456445C9485509 @default.
- W2950456445 hasLocation W29504564451 @default.
- W2950456445 hasOpenAccess W2950456445 @default.
- W2950456445 hasPrimaryLocation W29504564451 @default.
- W2950456445 hasRelatedWork W1517609707 @default.
- W2950456445 hasRelatedWork W1591689590 @default.
- W2950456445 hasRelatedWork W1655316599 @default.
- W2950456445 hasRelatedWork W1656241735 @default.
- W2950456445 hasRelatedWork W1966450376 @default.
- W2950456445 hasRelatedWork W2082482347 @default.
- W2950456445 hasRelatedWork W2094983520 @default.
- W2950456445 hasRelatedWork W2263123654 @default.
- W2950456445 hasRelatedWork W2522193420 @default.
- W2950456445 hasRelatedWork W2620585862 @default.
- W2950456445 hasRelatedWork W2795763531 @default.
- W2950456445 hasRelatedWork W2949087438 @default.
- W2950456445 hasRelatedWork W2952350510 @default.