Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950470268> ?p ?o ?g. }
- W2950470268 abstract "We have studied the low-temperature electrical transport properties of Pb$_x$(SiO$_2$)$_{1-x}$ ($x$ being the Pb volume fraction) nanogranular films with thicknesses of $sim$1000 nm and $x$ spanning the dielectric, transitional, and metallic regions. It is found that the percolation threshold $x_c$ lies between 0.57 and 0.60. For films with $x$$lesssim$0.50, the resistivities $rho$ as functions of temperature $T$ obey $rhoproptoexp(Delta/k_BT)$ relation ($Delta$ being the local superconducting gap and the $k_B$ Boltzmann constant) below the superconducting transition temperature $T_c$ ($sim$7 K) of Pb granules. The value of the gap obtained via this expression is almost identical to that by single electron tunneling spectra measurement. The magnetoresistance is negative below $T_c$ and its absolute value is far larger than that above $T_c$ at a certain field. These observations indicate that single electron hopping (or tunneling), rather than Cooper pair hopping (or tunneling) governs the transport processes below $T_c$. The temperature dependence of resistivities shows reentrant behavior for the 0.50$<$$x$$<$0.57 films. It is found that single electron hopping (or tunneling) also dominates the low-temperature transport process for these films. The reduction of the single electron concentration leads to an enhancement of the resisivity at sufficiently low temperature. For the 0.60$lesssim$$x$$lesssim$0.72 films, the resistivities sharply decrease with decreasing temperature just below $T_c$, and then show dissipation effect with further decreasing temperature. Treating the conducting paths composed of Pb particles as nanowires, we have found that the $R(T)$ data below $T_c$ can be well explained by a model that includes both thermally activated phase slips and quantum phase slips." @default.
- W2950470268 created "2019-06-27" @default.
- W2950470268 creator A5019835581 @default.
- W2950470268 creator A5049692788 @default.
- W2950470268 creator A5066760013 @default.
- W2950470268 creator A5075401326 @default.
- W2950470268 date "2019-03-18" @default.
- W2950470268 modified "2023-09-27" @default.
- W2950470268 title "Hopping conductance and macroscopic quantum tunneling effect in three dimensional Pbx(SiO2)1−x nanogranular films" @default.
- W2950470268 cites W1513995821 @default.
- W2950470268 cites W1969444220 @default.
- W2950470268 cites W1969988693 @default.
- W2950470268 cites W1973291665 @default.
- W2950470268 cites W1974925488 @default.
- W2950470268 cites W1976901952 @default.
- W2950470268 cites W1978339249 @default.
- W2950470268 cites W1978445547 @default.
- W2950470268 cites W1978850034 @default.
- W2950470268 cites W1980440805 @default.
- W2950470268 cites W1980475217 @default.
- W2950470268 cites W1984278601 @default.
- W2950470268 cites W1985162152 @default.
- W2950470268 cites W1993638683 @default.
- W2950470268 cites W1996372973 @default.
- W2950470268 cites W1999769113 @default.
- W2950470268 cites W2006913206 @default.
- W2950470268 cites W2007173639 @default.
- W2950470268 cites W2007732656 @default.
- W2950470268 cites W2009441896 @default.
- W2950470268 cites W2009863462 @default.
- W2950470268 cites W2009871519 @default.
- W2950470268 cites W2010455925 @default.
- W2950470268 cites W2014437371 @default.
- W2950470268 cites W2017830404 @default.
- W2950470268 cites W2018032752 @default.
- W2950470268 cites W2020432333 @default.
- W2950470268 cites W2021154554 @default.
- W2950470268 cites W2023666554 @default.
- W2950470268 cites W2023691939 @default.
- W2950470268 cites W2027357707 @default.
- W2950470268 cites W2028606994 @default.
- W2950470268 cites W2034057438 @default.
- W2950470268 cites W2035589806 @default.
- W2950470268 cites W2038293483 @default.
- W2950470268 cites W2040096725 @default.
- W2950470268 cites W2043644008 @default.
- W2950470268 cites W2047287502 @default.
- W2950470268 cites W2050420348 @default.
- W2950470268 cites W2050578919 @default.
- W2950470268 cites W2050670282 @default.
- W2950470268 cites W2052291258 @default.
- W2950470268 cites W2052953974 @default.
- W2950470268 cites W2055930871 @default.
- W2950470268 cites W2062520368 @default.
- W2950470268 cites W2067297324 @default.
- W2950470268 cites W2070593352 @default.
- W2950470268 cites W2072786692 @default.
- W2950470268 cites W2074545171 @default.
- W2950470268 cites W2075707742 @default.
- W2950470268 cites W2082936430 @default.
- W2950470268 cites W2085963844 @default.
- W2950470268 cites W2086065214 @default.
- W2950470268 cites W2088433268 @default.
- W2950470268 cites W2088456555 @default.
- W2950470268 cites W2095331986 @default.
- W2950470268 cites W2145116019 @default.
- W2950470268 cites W2150949535 @default.
- W2950470268 cites W2169762066 @default.
- W2950470268 cites W2171980165 @default.
- W2950470268 cites W2209524597 @default.
- W2950470268 cites W2225220729 @default.
- W2950470268 cites W2273017664 @default.
- W2950470268 cites W2334924717 @default.
- W2950470268 cites W2363042387 @default.
- W2950470268 cites W2498828123 @default.
- W2950470268 cites W2610596859 @default.
- W2950470268 cites W2625623458 @default.
- W2950470268 cites W2747137902 @default.
- W2950470268 cites W2885376710 @default.
- W2950470268 cites W3099417647 @default.
- W2950470268 cites W3105613574 @default.
- W2950470268 cites W3121561306 @default.
- W2950470268 doi "https://doi.org/10.1103/physrevb.99.094204" @default.
- W2950470268 hasPublicationYear "2019" @default.
- W2950470268 type Work @default.
- W2950470268 sameAs 2950470268 @default.
- W2950470268 citedByCount "4" @default.
- W2950470268 countsByYear W29504702682021 @default.
- W2950470268 countsByYear W29504702682023 @default.
- W2950470268 crossrefType "journal-article" @default.
- W2950470268 hasAuthorship W2950470268A5019835581 @default.
- W2950470268 hasAuthorship W2950470268A5049692788 @default.
- W2950470268 hasAuthorship W2950470268A5066760013 @default.
- W2950470268 hasAuthorship W2950470268A5075401326 @default.
- W2950470268 hasBestOaLocation W29504702682 @default.
- W2950470268 hasConcept C115260700 @default.
- W2950470268 hasConcept C117958382 @default.
- W2950470268 hasConcept C120398109 @default.
- W2950470268 hasConcept C121332964 @default.
- W2950470268 hasConcept C121932024 @default.