Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950471838> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2950471838 abstract "Models for genome-wide prediction and association studies usually target a single phenotypic trait. However, in animal and plant genetics it is common to record information on multiple phenotypes for each individual that will be genotyped. Modeling traits individually disregards the fact that they are most likely associated due to pleiotropy and shared biological basis, thus providing only a partial, confounded view of genetic effects and phenotypic interactions. In this paper we use data from a Multiparent Advanced Generation Inter-Cross (MAGIC) winter wheat population to explore Bayesian networks as a convenient and interpretable framework for the simultaneous modeling of multiple quantitative traits. We show that they are equivalent to multivariate genetic best linear unbiased prediction (GBLUP), and that they are competitive with single-trait elastic net and single-trait GBLUP in predictive performance. Finally, we discuss their relationship with other additive-effects models and their advantages in inference and interpretation. MAGIC populations provide an ideal setting for this kind of investigation because the very low population structure and large sample size result in predictive models with good power and limited confounding due to relatedness." @default.
- W2950471838 created "2019-06-27" @default.
- W2950471838 creator A5035805490 @default.
- W2950471838 creator A5059820079 @default.
- W2950471838 creator A5065485645 @default.
- W2950471838 creator A5071898738 @default.
- W2950471838 date "2014-02-12" @default.
- W2950471838 modified "2023-09-27" @default.
- W2950471838 title "Multiple Quantitative Trait Analysis Using Bayesian Networks" @default.
- W2950471838 hasPublicationYear "2014" @default.
- W2950471838 type Work @default.
- W2950471838 sameAs 2950471838 @default.
- W2950471838 citedByCount "0" @default.
- W2950471838 crossrefType "posted-content" @default.
- W2950471838 hasAuthorship W2950471838A5035805490 @default.
- W2950471838 hasAuthorship W2950471838A5059820079 @default.
- W2950471838 hasAuthorship W2950471838A5065485645 @default.
- W2950471838 hasAuthorship W2950471838A5071898738 @default.
- W2950471838 hasConcept C104317684 @default.
- W2950471838 hasConcept C105795698 @default.
- W2950471838 hasConcept C106934330 @default.
- W2950471838 hasConcept C107673813 @default.
- W2950471838 hasConcept C119857082 @default.
- W2950471838 hasConcept C127716648 @default.
- W2950471838 hasConcept C135763542 @default.
- W2950471838 hasConcept C144024400 @default.
- W2950471838 hasConcept C149923435 @default.
- W2950471838 hasConcept C153209595 @default.
- W2950471838 hasConcept C154945302 @default.
- W2950471838 hasConcept C163175372 @default.
- W2950471838 hasConcept C186413461 @default.
- W2950471838 hasConcept C199360897 @default.
- W2950471838 hasConcept C26207810 @default.
- W2950471838 hasConcept C2776214188 @default.
- W2950471838 hasConcept C2908647359 @default.
- W2950471838 hasConcept C33923547 @default.
- W2950471838 hasConcept C41008148 @default.
- W2950471838 hasConcept C54355233 @default.
- W2950471838 hasConcept C81941488 @default.
- W2950471838 hasConcept C86803240 @default.
- W2950471838 hasConceptScore W2950471838C104317684 @default.
- W2950471838 hasConceptScore W2950471838C105795698 @default.
- W2950471838 hasConceptScore W2950471838C106934330 @default.
- W2950471838 hasConceptScore W2950471838C107673813 @default.
- W2950471838 hasConceptScore W2950471838C119857082 @default.
- W2950471838 hasConceptScore W2950471838C127716648 @default.
- W2950471838 hasConceptScore W2950471838C135763542 @default.
- W2950471838 hasConceptScore W2950471838C144024400 @default.
- W2950471838 hasConceptScore W2950471838C149923435 @default.
- W2950471838 hasConceptScore W2950471838C153209595 @default.
- W2950471838 hasConceptScore W2950471838C154945302 @default.
- W2950471838 hasConceptScore W2950471838C163175372 @default.
- W2950471838 hasConceptScore W2950471838C186413461 @default.
- W2950471838 hasConceptScore W2950471838C199360897 @default.
- W2950471838 hasConceptScore W2950471838C26207810 @default.
- W2950471838 hasConceptScore W2950471838C2776214188 @default.
- W2950471838 hasConceptScore W2950471838C2908647359 @default.
- W2950471838 hasConceptScore W2950471838C33923547 @default.
- W2950471838 hasConceptScore W2950471838C41008148 @default.
- W2950471838 hasConceptScore W2950471838C54355233 @default.
- W2950471838 hasConceptScore W2950471838C81941488 @default.
- W2950471838 hasConceptScore W2950471838C86803240 @default.
- W2950471838 hasLocation W29504718381 @default.
- W2950471838 hasOpenAccess W2950471838 @default.
- W2950471838 hasPrimaryLocation W29504718381 @default.
- W2950471838 hasRelatedWork W1591063542 @default.
- W2950471838 hasRelatedWork W1988489968 @default.
- W2950471838 hasRelatedWork W2046660164 @default.
- W2950471838 hasRelatedWork W2057278369 @default.
- W2950471838 hasRelatedWork W2105548589 @default.
- W2950471838 hasRelatedWork W2179047587 @default.
- W2950471838 hasRelatedWork W2303595325 @default.
- W2950471838 hasRelatedWork W2315081834 @default.
- W2950471838 hasRelatedWork W2557240984 @default.
- W2950471838 hasRelatedWork W2565603842 @default.
- W2950471838 hasRelatedWork W2792417466 @default.
- W2950471838 hasRelatedWork W2793461513 @default.
- W2950471838 hasRelatedWork W2794960309 @default.
- W2950471838 hasRelatedWork W2937248943 @default.
- W2950471838 hasRelatedWork W2973895667 @default.
- W2950471838 hasRelatedWork W2995312470 @default.
- W2950471838 hasRelatedWork W3004741665 @default.
- W2950471838 hasRelatedWork W3024211197 @default.
- W2950471838 hasRelatedWork W3206109512 @default.
- W2950471838 hasRelatedWork W2595298579 @default.
- W2950471838 isParatext "false" @default.
- W2950471838 isRetracted "false" @default.
- W2950471838 magId "2950471838" @default.
- W2950471838 workType "article" @default.