Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950474323> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2950474323 abstract "In this article we consider computing expectations w.r.t.~probability laws associated to a certain class of stochastic systems. In order to achieve such a task, one must not only resort to numerical approximation of the expectation, but also to a biased discretization of the associated probability. We are concerned with the situation for which the discretization is required in multiple dimensions, for instance in space and time. In such contexts, it is known that the multi-index Monte Carlo (MIMC) method can improve upon i.i.d.~sampling from the most accurate approximation of the probability law. Indeed by a non-trivial modification of the multilevel Monte Carlo (MLMC) method and it can reduce the work to obtain a given level of error, relative to the afore mentioned i.i.d.~sampling and relative even to MLMC. In this article we consider the case when such probability laws are too complex to sampled independently. We develop a modification of the MIMC method which allows one to use standard Markov chain Monte Carlo (MCMC) algorithms to replace independent and coupled sampling, in certain contexts. We prove a variance theorem which shows that using our MIMCMC method is preferable, in the sense above, to i.i.d.~sampling from the most accurate approximation, under assumptions. The method is numerically illustrated on a problem associated to a stochastic partial differential equation (SPDE)." @default.
- W2950474323 created "2019-06-27" @default.
- W2950474323 creator A5047259277 @default.
- W2950474323 creator A5053058869 @default.
- W2950474323 creator A5085127363 @default.
- W2950474323 creator A5085696965 @default.
- W2950474323 date "2017-03-31" @default.
- W2950474323 modified "2023-10-18" @default.
- W2950474323 title "A Multi-Index Markov Chain Monte Carlo Method" @default.
- W2950474323 cites W2149498546 @default.
- W2950474323 cites W2163264365 @default.
- W2950474323 cites W2518319235 @default.
- W2950474323 cites W2962837870 @default.
- W2950474323 doi "https://doi.org/10.48550/arxiv.1704.00117" @default.
- W2950474323 hasPublicationYear "2017" @default.
- W2950474323 type Work @default.
- W2950474323 sameAs 2950474323 @default.
- W2950474323 citedByCount "0" @default.
- W2950474323 crossrefType "posted-content" @default.
- W2950474323 hasAuthorship W2950474323A5047259277 @default.
- W2950474323 hasAuthorship W2950474323A5053058869 @default.
- W2950474323 hasAuthorship W2950474323A5085127363 @default.
- W2950474323 hasAuthorship W2950474323A5085696965 @default.
- W2950474323 hasBestOaLocation W29504743231 @default.
- W2950474323 hasConcept C105795698 @default.
- W2950474323 hasConcept C106131492 @default.
- W2950474323 hasConcept C111350023 @default.
- W2950474323 hasConcept C126255220 @default.
- W2950474323 hasConcept C13153151 @default.
- W2950474323 hasConcept C134306372 @default.
- W2950474323 hasConcept C140779682 @default.
- W2950474323 hasConcept C187192777 @default.
- W2950474323 hasConcept C19499675 @default.
- W2950474323 hasConcept C28826006 @default.
- W2950474323 hasConcept C31972630 @default.
- W2950474323 hasConcept C33923547 @default.
- W2950474323 hasConcept C41008148 @default.
- W2950474323 hasConcept C52740198 @default.
- W2950474323 hasConcept C73000952 @default.
- W2950474323 hasConcept C98763669 @default.
- W2950474323 hasConceptScore W2950474323C105795698 @default.
- W2950474323 hasConceptScore W2950474323C106131492 @default.
- W2950474323 hasConceptScore W2950474323C111350023 @default.
- W2950474323 hasConceptScore W2950474323C126255220 @default.
- W2950474323 hasConceptScore W2950474323C13153151 @default.
- W2950474323 hasConceptScore W2950474323C134306372 @default.
- W2950474323 hasConceptScore W2950474323C140779682 @default.
- W2950474323 hasConceptScore W2950474323C187192777 @default.
- W2950474323 hasConceptScore W2950474323C19499675 @default.
- W2950474323 hasConceptScore W2950474323C28826006 @default.
- W2950474323 hasConceptScore W2950474323C31972630 @default.
- W2950474323 hasConceptScore W2950474323C33923547 @default.
- W2950474323 hasConceptScore W2950474323C41008148 @default.
- W2950474323 hasConceptScore W2950474323C52740198 @default.
- W2950474323 hasConceptScore W2950474323C73000952 @default.
- W2950474323 hasConceptScore W2950474323C98763669 @default.
- W2950474323 hasLocation W29504743231 @default.
- W2950474323 hasLocation W29504743232 @default.
- W2950474323 hasOpenAccess W2950474323 @default.
- W2950474323 hasPrimaryLocation W29504743231 @default.
- W2950474323 hasRelatedWork W1482570420 @default.
- W2950474323 hasRelatedWork W1593554773 @default.
- W2950474323 hasRelatedWork W2031427063 @default.
- W2950474323 hasRelatedWork W2036896164 @default.
- W2950474323 hasRelatedWork W2102985718 @default.
- W2950474323 hasRelatedWork W2108651330 @default.
- W2950474323 hasRelatedWork W2294026006 @default.
- W2950474323 hasRelatedWork W2922027001 @default.
- W2950474323 hasRelatedWork W2948895238 @default.
- W2950474323 hasRelatedWork W3036600315 @default.
- W2950474323 isParatext "false" @default.
- W2950474323 isRetracted "false" @default.
- W2950474323 magId "2950474323" @default.
- W2950474323 workType "article" @default.