Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950480314> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2950480314 endingPage "2373" @default.
- W2950480314 startingPage "2363" @default.
- W2950480314 abstract "In broad engineering fields, missing data is a common issue which often causes undesired bias and sparseness impeding rigorous data analyses. To tackle this problem, many imputation theories have been proposed and widely used. However, prior methods often require distributional assumptions and prior knowledge regarding data which may cause some difficulty for engineering research. Essentially, the fractional hot-deck imputation (FHDI) is an assumption-free imputation method, holding broad applicability in the engineering domains. FHDIs internal parameters and impact on statistical and machine learning methods, however, have been rarely understood. Thus, this study investigates the behavior and impacts of FHDI on prediction methods including generalized additive model, support vector machine, extremely randomized trees, and artificial neural network, for which four practical datasets (appliance energy, air quality, phenotypes, and weather) are used. Results show that FHDI performs better for improving the prediction accuracy compared to a simple naive method which cures missing data using the mean value of attributes, and FHDI has an asymptotically positive effect on prediction accuracy with decreasing response rates. Regarding an optimal setting, 30 to 35 is recommended for the FHDIs internal categorization number while 5 is recommended for the FHDI donors, which is aligned with Rubins recommendation." @default.
- W2950480314 created "2019-06-27" @default.
- W2950480314 creator A5015888108 @default.
- W2950480314 creator A5024555092 @default.
- W2950480314 creator A5045058568 @default.
- W2950480314 creator A5066001476 @default.
- W2950480314 creator A5071593501 @default.
- W2950480314 creator A5087182950 @default.
- W2950480314 date "2020-12-01" @default.
- W2950480314 modified "2023-10-18" @default.
- W2950480314 title "Impacts of Fractional Hot-Deck Imputation on Learning and Prediction of Engineering Data" @default.
- W2950480314 cites W1573084488 @default.
- W2950480314 cites W1840802971 @default.
- W2950480314 cites W1941761140 @default.
- W2950480314 cites W1983479840 @default.
- W2950480314 cites W1989665358 @default.
- W2950480314 cites W1990838207 @default.
- W2950480314 cites W1995341919 @default.
- W2950480314 cites W2032578483 @default.
- W2950480314 cites W2056132907 @default.
- W2950480314 cites W2083653302 @default.
- W2950480314 cites W2090074590 @default.
- W2950480314 cites W2100358124 @default.
- W2950480314 cites W2114103087 @default.
- W2950480314 cites W2115098571 @default.
- W2950480314 cites W2119160928 @default.
- W2950480314 cites W2124085800 @default.
- W2950480314 cites W2130859329 @default.
- W2950480314 cites W2146513703 @default.
- W2950480314 cites W2146672143 @default.
- W2950480314 cites W2159798994 @default.
- W2950480314 cites W2302719757 @default.
- W2950480314 cites W2308491386 @default.
- W2950480314 cites W2566930853 @default.
- W2950480314 cites W2745694116 @default.
- W2950480314 cites W2747116615 @default.
- W2950480314 cites W2782663138 @default.
- W2950480314 cites W2799906491 @default.
- W2950480314 cites W2804541179 @default.
- W2950480314 cites W3101438021 @default.
- W2950480314 cites W4239510810 @default.
- W2950480314 cites W4298870098 @default.
- W2950480314 doi "https://doi.org/10.1109/tkde.2019.2922638" @default.
- W2950480314 hasPublicationYear "2020" @default.
- W2950480314 type Work @default.
- W2950480314 sameAs 2950480314 @default.
- W2950480314 citedByCount "13" @default.
- W2950480314 countsByYear W29504803142021 @default.
- W2950480314 countsByYear W29504803142022 @default.
- W2950480314 countsByYear W29504803142023 @default.
- W2950480314 crossrefType "journal-article" @default.
- W2950480314 hasAuthorship W2950480314A5015888108 @default.
- W2950480314 hasAuthorship W2950480314A5024555092 @default.
- W2950480314 hasAuthorship W2950480314A5045058568 @default.
- W2950480314 hasAuthorship W2950480314A5066001476 @default.
- W2950480314 hasAuthorship W2950480314A5071593501 @default.
- W2950480314 hasAuthorship W2950480314A5087182950 @default.
- W2950480314 hasBestOaLocation W29504803141 @default.
- W2950480314 hasConcept C119857082 @default.
- W2950480314 hasConcept C12267149 @default.
- W2950480314 hasConcept C124101348 @default.
- W2950480314 hasConcept C154945302 @default.
- W2950480314 hasConcept C41008148 @default.
- W2950480314 hasConcept C50644808 @default.
- W2950480314 hasConcept C58041806 @default.
- W2950480314 hasConcept C9357733 @default.
- W2950480314 hasConceptScore W2950480314C119857082 @default.
- W2950480314 hasConceptScore W2950480314C12267149 @default.
- W2950480314 hasConceptScore W2950480314C124101348 @default.
- W2950480314 hasConceptScore W2950480314C154945302 @default.
- W2950480314 hasConceptScore W2950480314C41008148 @default.
- W2950480314 hasConceptScore W2950480314C50644808 @default.
- W2950480314 hasConceptScore W2950480314C58041806 @default.
- W2950480314 hasConceptScore W2950480314C9357733 @default.
- W2950480314 hasFunder F4320306076 @default.
- W2950480314 hasFunder F4320333169 @default.
- W2950480314 hasIssue "12" @default.
- W2950480314 hasLocation W29504803141 @default.
- W2950480314 hasOpenAccess W2950480314 @default.
- W2950480314 hasPrimaryLocation W29504803141 @default.
- W2950480314 hasRelatedWork W1513289763 @default.
- W2950480314 hasRelatedWork W1973721774 @default.
- W2950480314 hasRelatedWork W2316243772 @default.
- W2950480314 hasRelatedWork W2541565311 @default.
- W2950480314 hasRelatedWork W2751555317 @default.
- W2950480314 hasRelatedWork W2784019465 @default.
- W2950480314 hasRelatedWork W2900766238 @default.
- W2950480314 hasRelatedWork W3049453136 @default.
- W2950480314 hasRelatedWork W569810835 @default.
- W2950480314 hasRelatedWork W2112497756 @default.
- W2950480314 hasVolume "32" @default.
- W2950480314 isParatext "false" @default.
- W2950480314 isRetracted "false" @default.
- W2950480314 magId "2950480314" @default.
- W2950480314 workType "article" @default.