Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950486995> ?p ?o ?g. }
- W2950486995 endingPage "160" @default.
- W2950486995 startingPage "145" @default.
- W2950486995 abstract "Termination is one of the basic liveness properties, and we study the termination problem for probabilistic programs with real-valued variables. Previous works focused on the qualitative problem that asks whether an input program terminates with probability 1 (almost-sure termination). A powerful approach for this qualitative problem is the notion of ranking supermartingales with respect to a given set of invariants. The quantitative problem (probabilistic termination) asks for bounds on the termination probability, and this problem has not been addressed yet. A fundamental and conceptual drawback of the existing approaches to address probabilistic termination is that even though the supermartingales consider the probabilistic behaviour of the programs, the invariants are obtained completely ignoring the probabilistic aspect (i.e., the invariants are obtained considering all behaviours with no information about the probability). In this work we address the probabilistic termination problem for linear-arithmetic probabilistic programs with nondeterminism. We formally define the notion of stochastic invariants , which are constraints along with a probability bound that the constraints hold. We introduce a concept of repulsing supermartingales . First, we show that repulsing supermartingales can be used to obtain bounds on the probability of the stochastic invariants. Second, we show the effectiveness of repulsing supermartingales in the following three ways: (1) With a combination of ranking and repulsing supermartingales we can compute lower bounds on the probability of termination; (2) repulsing supermartingales provide witnesses for refutation of almost-sure termination; and (3) with a combination of ranking and repulsing supermartingales we can establish persistence properties of probabilistic programs. Along with our conceptual contributions, we establish the following computational results: First, the synthesis of a stochastic invariant which supports some ranking supermartingale and at the same time admits a repulsing supermartingale can be achieved via reduction to the existential first-order theory of reals, which generalizes existing results from the non-probabilistic setting. Second, given a program with strict invariants (e.g., obtained via abstract interpretation) and a stochastic invariant, we can check in polynomial time whether there exists a linear repulsing supermartingale w.r.t. the stochastic invariant (via reduction to LP). We also present experimental evaluation of our approach on academic examples." @default.
- W2950486995 created "2019-06-27" @default.
- W2950486995 creator A5026464429 @default.
- W2950486995 creator A5041082080 @default.
- W2950486995 creator A5052607806 @default.
- W2950486995 date "2017-01-01" @default.
- W2950486995 modified "2023-10-18" @default.
- W2950486995 title "Stochastic invariants for probabilistic termination" @default.
- W2950486995 cites W1496468608 @default.
- W2950486995 cites W1498004481 @default.
- W2950486995 cites W1499072146 @default.
- W2950486995 cites W1585194019 @default.
- W2950486995 cites W1589106570 @default.
- W2950486995 cites W1595989212 @default.
- W2950486995 cites W1605543919 @default.
- W2950486995 cites W1608799719 @default.
- W2950486995 cites W1975636681 @default.
- W2950486995 cites W1982800675 @default.
- W2950486995 cites W1989462119 @default.
- W2950486995 cites W1993112505 @default.
- W2950486995 cites W1993129359 @default.
- W2950486995 cites W1996417974 @default.
- W2950486995 cites W2001097638 @default.
- W2950486995 cites W2005805388 @default.
- W2950486995 cites W2024355065 @default.
- W2950486995 cites W2043100293 @default.
- W2950486995 cites W2048025009 @default.
- W2950486995 cites W2054940841 @default.
- W2950486995 cites W2068106852 @default.
- W2950486995 cites W2081320273 @default.
- W2950486995 cites W2084147655 @default.
- W2950486995 cites W2100301927 @default.
- W2950486995 cites W2107399212 @default.
- W2950486995 cites W2122843152 @default.
- W2950486995 cites W2151958719 @default.
- W2950486995 cites W2166496828 @default.
- W2950486995 cites W2168359464 @default.
- W2950486995 cites W2233431969 @default.
- W2950486995 cites W2295266283 @default.
- W2950486995 cites W2471883032 @default.
- W2950486995 cites W2548604229 @default.
- W2950486995 cites W2913788705 @default.
- W2950486995 cites W4212875940 @default.
- W2950486995 cites W4230058301 @default.
- W2950486995 cites W4236847445 @default.
- W2950486995 cites W4251912342 @default.
- W2950486995 cites W57094165 @default.
- W2950486995 doi "https://doi.org/10.1145/3093333.3009873" @default.
- W2950486995 hasPublicationYear "2017" @default.
- W2950486995 type Work @default.
- W2950486995 sameAs 2950486995 @default.
- W2950486995 citedByCount "19" @default.
- W2950486995 countsByYear W29504869952016 @default.
- W2950486995 countsByYear W29504869952017 @default.
- W2950486995 countsByYear W29504869952018 @default.
- W2950486995 countsByYear W29504869952019 @default.
- W2950486995 countsByYear W29504869952020 @default.
- W2950486995 countsByYear W29504869952021 @default.
- W2950486995 countsByYear W29504869952023 @default.
- W2950486995 crossrefType "journal-article" @default.
- W2950486995 hasAuthorship W2950486995A5026464429 @default.
- W2950486995 hasAuthorship W2950486995A5041082080 @default.
- W2950486995 hasAuthorship W2950486995A5052607806 @default.
- W2950486995 hasBestOaLocation W29504869952 @default.
- W2950486995 hasConcept C128828806 @default.
- W2950486995 hasConcept C154945302 @default.
- W2950486995 hasConcept C15569618 @default.
- W2950486995 hasConcept C177264268 @default.
- W2950486995 hasConcept C189430467 @default.
- W2950486995 hasConcept C199360897 @default.
- W2950486995 hasConcept C41008148 @default.
- W2950486995 hasConcept C49937458 @default.
- W2950486995 hasConcept C80444323 @default.
- W2950486995 hasConceptScore W2950486995C128828806 @default.
- W2950486995 hasConceptScore W2950486995C154945302 @default.
- W2950486995 hasConceptScore W2950486995C15569618 @default.
- W2950486995 hasConceptScore W2950486995C177264268 @default.
- W2950486995 hasConceptScore W2950486995C189430467 @default.
- W2950486995 hasConceptScore W2950486995C199360897 @default.
- W2950486995 hasConceptScore W2950486995C41008148 @default.
- W2950486995 hasConceptScore W2950486995C49937458 @default.
- W2950486995 hasConceptScore W2950486995C80444323 @default.
- W2950486995 hasFunder F4320321003 @default.
- W2950486995 hasFunder F4320321181 @default.
- W2950486995 hasFunder F4320334678 @default.
- W2950486995 hasFunder F4320334960 @default.
- W2950486995 hasIssue "1" @default.
- W2950486995 hasLocation W29504869951 @default.
- W2950486995 hasLocation W29504869952 @default.
- W2950486995 hasOpenAccess W2950486995 @default.
- W2950486995 hasPrimaryLocation W29504869951 @default.
- W2950486995 hasRelatedWork W1556044724 @default.
- W2950486995 hasRelatedWork W2296677913 @default.
- W2950486995 hasRelatedWork W2808385338 @default.
- W2950486995 hasRelatedWork W2904903913 @default.
- W2950486995 hasRelatedWork W2995415950 @default.
- W2950486995 hasRelatedWork W3205896373 @default.
- W2950486995 hasRelatedWork W4283579494 @default.