Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950491211> ?p ?o ?g. }
- W2950491211 endingPage "211" @default.
- W2950491211 startingPage "206" @default.
- W2950491211 abstract "Variability in radiation exposure from CT scans can be appropriate and driven by patient features such as body habitus. Quantitative analysis may be performed to discover instances of unwarranted radiation exposure and to reduce the probability of such occurrences in future patient visits. No universal process to perform identification of outliers is widely available, and access to expertise and resources is variable.The goal of this study is to develop an automated outlier detection procedure to identify all scans with an unanticipated high radiation exposure, given the characteristics of the patient and the type of the exam.This Institutional Review Board-approved retrospective cohort study was conducted from June 30, 2012 - December 31, 2013 in a quaternary academic medical center. The de-identified dataset contained 28 fields for 189,959 CT exams. We applied the variable selection method Least Absolute Shrinkage and Selection Operator (LASSO) to select important variables for predicting CT radiation dose. We then employed a regression approach that is robust to outliers, to learn from data a predictive model of CT radiation doses given important variables identified by LASSO. Patient visits whose predicted radiation dose was statistically different from the radiation dose actually received were identified as outliers.Our methodology identified 1% of CT exams as outliers. The top-5 predictors discovered by LASSO and strongly correlated with radiation dose were Tube Current, kVp, Weight, Width of collimator, and Reference milliampere-seconds. A human expert validation of the outlier detection algorithm has yielded specificity of 0.85 [95% CI 0.78-0.92] and sensitivity of 0.91 [95% CI 0.85-0.97] (PPV = 0.84, NPV = 0.92). These values substantially outperform alternative methods we tested (F1 score 0.88 for our method against 0.51 for the alternatives).The study developed and tested a novel, automated method for processing CT scanner meta-data to identify CT exams where patients received an unwarranted amount of radiation. Radiation safety and protocol review committees may use this technique to uncover systemic issues and reduce future incidents." @default.
- W2950491211 created "2019-06-27" @default.
- W2950491211 creator A5028196825 @default.
- W2950491211 creator A5041994101 @default.
- W2950491211 creator A5065789326 @default.
- W2950491211 creator A5067887830 @default.
- W2950491211 creator A5075696701 @default.
- W2950491211 date "2019-01-01" @default.
- W2950491211 modified "2023-10-14" @default.
- W2950491211 title "Detection of unwarranted CT radiation exposure from patient and imaging protocol meta-data using regularized regression" @default.
- W2950491211 cites W1700571541 @default.
- W2950491211 cites W1977284027 @default.
- W2950491211 cites W1980757052 @default.
- W2950491211 cites W2018012226 @default.
- W2950491211 cites W2019011728 @default.
- W2950491211 cites W2027997545 @default.
- W2950491211 cites W2075728060 @default.
- W2950491211 cites W2097360283 @default.
- W2950491211 cites W2122189635 @default.
- W2950491211 cites W2123084387 @default.
- W2950491211 cites W2138777809 @default.
- W2950491211 cites W2139531853 @default.
- W2950491211 cites W2147272585 @default.
- W2950491211 cites W2289775875 @default.
- W2950491211 cites W2319770304 @default.
- W2950491211 cites W2558942163 @default.
- W2950491211 cites W2611951884 @default.
- W2950491211 cites W2748508855 @default.
- W2950491211 cites W2783522756 @default.
- W2950491211 cites W2893687496 @default.
- W2950491211 cites W3133347321 @default.
- W2950491211 cites W4294541781 @default.
- W2950491211 doi "https://doi.org/10.1016/j.ejro.2019.04.007" @default.
- W2950491211 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6551377" @default.
- W2950491211 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31194104" @default.
- W2950491211 hasPublicationYear "2019" @default.
- W2950491211 type Work @default.
- W2950491211 sameAs 2950491211 @default.
- W2950491211 citedByCount "6" @default.
- W2950491211 countsByYear W29504912112018 @default.
- W2950491211 countsByYear W29504912112021 @default.
- W2950491211 countsByYear W29504912112022 @default.
- W2950491211 countsByYear W29504912112023 @default.
- W2950491211 crossrefType "journal-article" @default.
- W2950491211 hasAuthorship W2950491211A5028196825 @default.
- W2950491211 hasAuthorship W2950491211A5041994101 @default.
- W2950491211 hasAuthorship W2950491211A5065789326 @default.
- W2950491211 hasAuthorship W2950491211A5067887830 @default.
- W2950491211 hasAuthorship W2950491211A5075696701 @default.
- W2950491211 hasBestOaLocation W29504912111 @default.
- W2950491211 hasConcept C126838900 @default.
- W2950491211 hasConcept C136764020 @default.
- W2950491211 hasConcept C142724271 @default.
- W2950491211 hasConcept C154945302 @default.
- W2950491211 hasConcept C19527891 @default.
- W2950491211 hasConcept C204787440 @default.
- W2950491211 hasConcept C2780385302 @default.
- W2950491211 hasConcept C2987700449 @default.
- W2950491211 hasConcept C2989005 @default.
- W2950491211 hasConcept C37616216 @default.
- W2950491211 hasConcept C41008148 @default.
- W2950491211 hasConcept C71924100 @default.
- W2950491211 hasConcept C739882 @default.
- W2950491211 hasConcept C79337645 @default.
- W2950491211 hasConceptScore W2950491211C126838900 @default.
- W2950491211 hasConceptScore W2950491211C136764020 @default.
- W2950491211 hasConceptScore W2950491211C142724271 @default.
- W2950491211 hasConceptScore W2950491211C154945302 @default.
- W2950491211 hasConceptScore W2950491211C19527891 @default.
- W2950491211 hasConceptScore W2950491211C204787440 @default.
- W2950491211 hasConceptScore W2950491211C2780385302 @default.
- W2950491211 hasConceptScore W2950491211C2987700449 @default.
- W2950491211 hasConceptScore W2950491211C2989005 @default.
- W2950491211 hasConceptScore W2950491211C37616216 @default.
- W2950491211 hasConceptScore W2950491211C41008148 @default.
- W2950491211 hasConceptScore W2950491211C71924100 @default.
- W2950491211 hasConceptScore W2950491211C739882 @default.
- W2950491211 hasConceptScore W2950491211C79337645 @default.
- W2950491211 hasFunder F4320306076 @default.
- W2950491211 hasFunder F4320332161 @default.
- W2950491211 hasFunder F4320337345 @default.
- W2950491211 hasLocation W29504912111 @default.
- W2950491211 hasLocation W29504912112 @default.
- W2950491211 hasLocation W29504912113 @default.
- W2950491211 hasLocation W29504912114 @default.
- W2950491211 hasLocation W29504912115 @default.
- W2950491211 hasOpenAccess W2950491211 @default.
- W2950491211 hasPrimaryLocation W29504912111 @default.
- W2950491211 hasRelatedWork W2046456988 @default.
- W2950491211 hasRelatedWork W2212119398 @default.
- W2950491211 hasRelatedWork W2295423552 @default.
- W2950491211 hasRelatedWork W2499612753 @default.
- W2950491211 hasRelatedWork W2946096271 @default.
- W2950491211 hasRelatedWork W2998615029 @default.
- W2950491211 hasRelatedWork W3006513224 @default.
- W2950491211 hasRelatedWork W3090384609 @default.
- W2950491211 hasRelatedWork W3111802945 @default.
- W2950491211 hasRelatedWork W3107369729 @default.