Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950492715> ?p ?o ?g. }
- W2950492715 abstract "We prove weighted anisotropic analytic estimates for solutions of second order elliptic boundary value problems in polyhedra. The weighted analytic classes which we use are the same as those introduced by Guo in 1993 in view of establishing exponential convergence for hp finite element methods in polyhedra. We first give a simple proof of the known weighted analytic regularity in a polygon, relying on a new formulation of elliptic a priori estimates in smooth domains with analytic control of derivatives. The technique is based on dyadic partitions near the corners. This technique can successfully be extended to polyhedra, providing isotropic analytic regularity. This is not optimal, because it does not take advantage of the full regularity along the edges. We combine it with a nested open set technique to obtain the desired three-dimensional anisotropic analytic regularity result. Our proofs are global and do not require the analysis of singular functions." @default.
- W2950492715 created "2019-06-27" @default.
- W2950492715 creator A5005616849 @default.
- W2950492715 creator A5073569699 @default.
- W2950492715 creator A5075698020 @default.
- W2950492715 date "2010-02-09" @default.
- W2950492715 modified "2023-10-02" @default.
- W2950492715 title "Analytic Regularity for Linear Elliptic Systems in Polygons and Polyhedra" @default.
- W2950492715 cites W130356082 @default.
- W2950492715 cites W1589236075 @default.
- W2950492715 cites W171808787 @default.
- W2950492715 cites W1987901642 @default.
- W2950492715 cites W2006333565 @default.
- W2950492715 cites W2023633927 @default.
- W2950492715 cites W2027465934 @default.
- W2950492715 cites W2030282122 @default.
- W2950492715 cites W2061438882 @default.
- W2950492715 cites W2072804728 @default.
- W2950492715 cites W2077070913 @default.
- W2950492715 cites W2080657603 @default.
- W2950492715 cites W2085562496 @default.
- W2950492715 cites W2090239385 @default.
- W2950492715 cites W2111030853 @default.
- W2950492715 cites W2122710352 @default.
- W2950492715 cites W2124413011 @default.
- W2950492715 cites W2125667158 @default.
- W2950492715 cites W2130008003 @default.
- W2950492715 cites W2130711343 @default.
- W2950492715 cites W2140835714 @default.
- W2950492715 cites W2143037388 @default.
- W2950492715 cites W2150973000 @default.
- W2950492715 cites W2151436959 @default.
- W2950492715 cites W2161909192 @default.
- W2950492715 cites W591292934 @default.
- W2950492715 hasPublicationYear "2010" @default.
- W2950492715 type Work @default.
- W2950492715 sameAs 2950492715 @default.
- W2950492715 citedByCount "0" @default.
- W2950492715 crossrefType "posted-content" @default.
- W2950492715 hasAuthorship W2950492715A5005616849 @default.
- W2950492715 hasAuthorship W2950492715A5073569699 @default.
- W2950492715 hasAuthorship W2950492715A5075698020 @default.
- W2950492715 hasConcept C108710211 @default.
- W2950492715 hasConcept C111472728 @default.
- W2950492715 hasConcept C114614502 @default.
- W2950492715 hasConcept C121332964 @default.
- W2950492715 hasConcept C126042441 @default.
- W2950492715 hasConcept C134306372 @default.
- W2950492715 hasConcept C138885662 @default.
- W2950492715 hasConcept C184050105 @default.
- W2950492715 hasConcept C190694206 @default.
- W2950492715 hasConcept C202444582 @default.
- W2950492715 hasConcept C2524010 @default.
- W2950492715 hasConcept C2834757 @default.
- W2950492715 hasConcept C28826006 @default.
- W2950492715 hasConcept C33923547 @default.
- W2950492715 hasConcept C41008148 @default.
- W2950492715 hasConcept C54829058 @default.
- W2950492715 hasConcept C62520636 @default.
- W2950492715 hasConcept C75553542 @default.
- W2950492715 hasConcept C76155785 @default.
- W2950492715 hasConceptScore W2950492715C108710211 @default.
- W2950492715 hasConceptScore W2950492715C111472728 @default.
- W2950492715 hasConceptScore W2950492715C114614502 @default.
- W2950492715 hasConceptScore W2950492715C121332964 @default.
- W2950492715 hasConceptScore W2950492715C126042441 @default.
- W2950492715 hasConceptScore W2950492715C134306372 @default.
- W2950492715 hasConceptScore W2950492715C138885662 @default.
- W2950492715 hasConceptScore W2950492715C184050105 @default.
- W2950492715 hasConceptScore W2950492715C190694206 @default.
- W2950492715 hasConceptScore W2950492715C202444582 @default.
- W2950492715 hasConceptScore W2950492715C2524010 @default.
- W2950492715 hasConceptScore W2950492715C2834757 @default.
- W2950492715 hasConceptScore W2950492715C28826006 @default.
- W2950492715 hasConceptScore W2950492715C33923547 @default.
- W2950492715 hasConceptScore W2950492715C41008148 @default.
- W2950492715 hasConceptScore W2950492715C54829058 @default.
- W2950492715 hasConceptScore W2950492715C62520636 @default.
- W2950492715 hasConceptScore W2950492715C75553542 @default.
- W2950492715 hasConceptScore W2950492715C76155785 @default.
- W2950492715 hasLocation W29504927151 @default.
- W2950492715 hasOpenAccess W2950492715 @default.
- W2950492715 hasPrimaryLocation W29504927151 @default.
- W2950492715 hasRelatedWork W1548347444 @default.
- W2950492715 hasRelatedWork W195305838 @default.
- W2950492715 hasRelatedWork W2002447667 @default.
- W2950492715 hasRelatedWork W2023195444 @default.
- W2950492715 hasRelatedWork W2028741263 @default.
- W2950492715 hasRelatedWork W2029027141 @default.
- W2950492715 hasRelatedWork W2144654029 @default.
- W2950492715 hasRelatedWork W2200733728 @default.
- W2950492715 hasRelatedWork W2304760580 @default.
- W2950492715 hasRelatedWork W2807486221 @default.
- W2950492715 hasRelatedWork W2947437886 @default.
- W2950492715 hasRelatedWork W2952375017 @default.
- W2950492715 hasRelatedWork W2952391100 @default.
- W2950492715 hasRelatedWork W2955128580 @default.
- W2950492715 hasRelatedWork W3043834975 @default.
- W2950492715 hasRelatedWork W3123753111 @default.
- W2950492715 hasRelatedWork W3170639968 @default.