Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950492728> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2950492728 abstract "In this paper we study random linear systems with $k$ variables per equation over the finite field GF(2), or equivalently $k$-XOR-CNF formulas. In a previous paper Creignou and Daude proved that the phase transition for the consistency (satisfiability) of such systems (formulas) exhibits a sharp threshold. Here we prove that the phase transition occurs as the number of equations (clauses) is proportional to the number of variables. For any $kge 3$ we establish first estimates for the critical ratio. For $k=3$ we get 0.93 as an upper bound, 0.89 as a lower bound, whereas experiments suggest that the critical ratio is approximately 0.92." @default.
- W2950492728 created "2019-06-27" @default.
- W2950492728 creator A5027455541 @default.
- W2950492728 creator A5053691016 @default.
- W2950492728 creator A5090333344 @default.
- W2950492728 date "2001-06-01" @default.
- W2950492728 modified "2023-10-01" @default.
- W2950492728 title "Approximating the satisfiability threshold for random k-XOR-formulas" @default.
- W2950492728 cites W1978732816 @default.
- W2950492728 cites W2051580875 @default.
- W2950492728 cites W2091968492 @default.
- W2950492728 cites W2905110430 @default.
- W2950492728 cites W2914940143 @default.
- W2950492728 hasPublicationYear "2001" @default.
- W2950492728 type Work @default.
- W2950492728 sameAs 2950492728 @default.
- W2950492728 citedByCount "2" @default.
- W2950492728 crossrefType "posted-content" @default.
- W2950492728 hasAuthorship W2950492728A5027455541 @default.
- W2950492728 hasAuthorship W2950492728A5053691016 @default.
- W2950492728 hasAuthorship W2950492728A5090333344 @default.
- W2950492728 hasConcept C114614502 @default.
- W2950492728 hasConcept C118615104 @default.
- W2950492728 hasConcept C134306372 @default.
- W2950492728 hasConcept C168773769 @default.
- W2950492728 hasConcept C2776436953 @default.
- W2950492728 hasConcept C33923547 @default.
- W2950492728 hasConcept C77553402 @default.
- W2950492728 hasConcept C77926391 @default.
- W2950492728 hasConceptScore W2950492728C114614502 @default.
- W2950492728 hasConceptScore W2950492728C118615104 @default.
- W2950492728 hasConceptScore W2950492728C134306372 @default.
- W2950492728 hasConceptScore W2950492728C168773769 @default.
- W2950492728 hasConceptScore W2950492728C2776436953 @default.
- W2950492728 hasConceptScore W2950492728C33923547 @default.
- W2950492728 hasConceptScore W2950492728C77553402 @default.
- W2950492728 hasConceptScore W2950492728C77926391 @default.
- W2950492728 hasLocation W29504927281 @default.
- W2950492728 hasOpenAccess W2950492728 @default.
- W2950492728 hasPrimaryLocation W29504927281 @default.
- W2950492728 hasRelatedWork W128487529 @default.
- W2950492728 hasRelatedWork W1513443978 @default.
- W2950492728 hasRelatedWork W1689369617 @default.
- W2950492728 hasRelatedWork W1971527654 @default.
- W2950492728 hasRelatedWork W2053521002 @default.
- W2950492728 hasRelatedWork W2083528288 @default.
- W2950492728 hasRelatedWork W2132298535 @default.
- W2950492728 hasRelatedWork W232501524 @default.
- W2950492728 hasRelatedWork W2341536123 @default.
- W2950492728 hasRelatedWork W2345858229 @default.
- W2950492728 hasRelatedWork W2766828223 @default.
- W2950492728 hasRelatedWork W2949508640 @default.
- W2950492728 hasRelatedWork W2949963239 @default.
- W2950492728 hasRelatedWork W2949990864 @default.
- W2950492728 hasRelatedWork W2951360443 @default.
- W2950492728 hasRelatedWork W2952790778 @default.
- W2950492728 hasRelatedWork W2963430398 @default.
- W2950492728 hasRelatedWork W2978682257 @default.
- W2950492728 hasRelatedWork W3012485420 @default.
- W2950492728 hasRelatedWork W3100778348 @default.
- W2950492728 isParatext "false" @default.
- W2950492728 isRetracted "false" @default.
- W2950492728 magId "2950492728" @default.
- W2950492728 workType "article" @default.