Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950536468> ?p ?o ?g. }
- W2950536468 endingPage "113961" @default.
- W2950536468 startingPage "113961" @default.
- W2950536468 abstract "This paper investigates the effects of circumsolar radiation on the optimal performance of a coupled parabolic dish and a Stirling heat engine, referred to as the Dish/Stirling system. The presence of circumsolar radiation results in the widening of the solar cone in which the solar beam (direct) radiation is received by the parabolic dish. This beam radiation cone enlargement effectively degrades the collector performance, especially for the very high concentration ratio collectors such as the parabolic dish. The enlarged solar beam radiation cone angular width results in enhanced solar radiation flux spillage at the receiver due to the inability of the parabolic dish reflector surface to focus a significant fraction of incoming beam radiation. This reduces both the energy input as well as the maximum temperature of the Stirling heat engine cycle and causes a reduction in the overall thermal efficiency of the Dish/Stirling system. The present study analyzes this effect by considering various levels of circumsolar radiation, characterized by a parameter known as the circumsolar ratio. The data for the intercept factor of the parabolic dish collector is based on the circumsolar radiation measurements obtained by researchers at the Lawrence Berkeley Laboratory, and the results of analysis reported by researchers at the Solar Energy Research Institute (currently the National Renewable Energy Laboratory). For the present analysis, this intercept factor data is curve-fitted for different circumsolar ratio, mirror optical errors and the concentration ratio using a MATLAB® program. The overall thermal efficiency of the Dish/Stirling system is maximized with respect to the concentration ratio of the parabolic dish and the maximum temperature ratio of the Stirling heat engine using the first law of thermodynamics. This optimization process is performed using a MATLAB® program. Optimal values of concentration ratio for the parabolic dish collector, and the maximum temperature ratio of the Stirling cycle are obtained corresponding to the maximum overall thermal efficiency of the Dish/Stirling system. The study shows that, for a parabolic collector with low mirror optical error and rim angle of 60°, an increase in circumsolar ratio from 0.02 to 0.2 reduces the maximum overall thermal efficiency, optimal concentration ratio and optimal temperature ratio by about 13%, 18% and 7% respectively. In the case of parabolic collectors with high mirror optical error and rim angle of 60°, an increase in circumsolar ratio from 0.02 to 0.2 reduces the maximum overall thermal efficiency, optimal concentration ratio and optimal temperature ratio by about 10%, 11% and 5% respectively. Similar trends are observed for parabolic dish collectors with rim angle of 40°. Results from this study are presented in the form of performance charts that show the effects of varying circumsolar ratios, mirror optical errors, rim angles, non-dimensional radiation flux and non-dimensional convection loss parameters on the maximum overall thermal efficiency of the Dish/Stirling system." @default.
- W2950536468 created "2019-06-27" @default.
- W2950536468 creator A5034918276 @default.
- W2950536468 creator A5052250703 @default.
- W2950536468 creator A5058098023 @default.
- W2950536468 date "2019-08-01" @default.
- W2950536468 modified "2023-09-28" @default.
- W2950536468 title "Effects of circumsolar radiation on the optimal performance of a Stirling heat engine coupled with a parabolic dish solar collector" @default.
- W2950536468 cites W1951817746 @default.
- W2950536468 cites W1984271821 @default.
- W2950536468 cites W1999473904 @default.
- W2950536468 cites W2001158708 @default.
- W2950536468 cites W2007232809 @default.
- W2950536468 cites W2008308036 @default.
- W2950536468 cites W2009956666 @default.
- W2950536468 cites W2011332590 @default.
- W2950536468 cites W2027402236 @default.
- W2950536468 cites W2029512857 @default.
- W2950536468 cites W2045716776 @default.
- W2950536468 cites W2047407454 @default.
- W2950536468 cites W2047930479 @default.
- W2950536468 cites W2053653129 @default.
- W2950536468 cites W2061262489 @default.
- W2950536468 cites W2075303783 @default.
- W2950536468 cites W2086271359 @default.
- W2950536468 cites W2093413881 @default.
- W2950536468 cites W2100853460 @default.
- W2950536468 cites W2113454599 @default.
- W2950536468 cites W2206275666 @default.
- W2950536468 cites W2222420182 @default.
- W2950536468 cites W2266081838 @default.
- W2950536468 cites W2555209135 @default.
- W2950536468 cites W2618327166 @default.
- W2950536468 cites W2791826507 @default.
- W2950536468 cites W2895426319 @default.
- W2950536468 cites W4231884918 @default.
- W2950536468 cites W942472105 @default.
- W2950536468 doi "https://doi.org/10.1016/j.applthermaleng.2019.113961" @default.
- W2950536468 hasPublicationYear "2019" @default.
- W2950536468 type Work @default.
- W2950536468 sameAs 2950536468 @default.
- W2950536468 citedByCount "23" @default.
- W2950536468 countsByYear W29505364682019 @default.
- W2950536468 countsByYear W29505364682020 @default.
- W2950536468 countsByYear W29505364682021 @default.
- W2950536468 countsByYear W29505364682022 @default.
- W2950536468 countsByYear W29505364682023 @default.
- W2950536468 crossrefType "journal-article" @default.
- W2950536468 hasAuthorship W2950536468A5034918276 @default.
- W2950536468 hasAuthorship W2950536468A5052250703 @default.
- W2950536468 hasAuthorship W2950536468A5058098023 @default.
- W2950536468 hasConcept C116903202 @default.
- W2950536468 hasConcept C119599485 @default.
- W2950536468 hasConcept C120665830 @default.
- W2950536468 hasConcept C121332964 @default.
- W2950536468 hasConcept C127413603 @default.
- W2950536468 hasConcept C153385146 @default.
- W2950536468 hasConcept C192562407 @default.
- W2950536468 hasConcept C196431656 @default.
- W2950536468 hasConcept C27134321 @default.
- W2950536468 hasConcept C2778415886 @default.
- W2950536468 hasConcept C2982854487 @default.
- W2950536468 hasConcept C541104983 @default.
- W2950536468 hasConcept C80559505 @default.
- W2950536468 hasConcept C9466671 @default.
- W2950536468 hasConcept C97355855 @default.
- W2950536468 hasConcept C97546620 @default.
- W2950536468 hasConceptScore W2950536468C116903202 @default.
- W2950536468 hasConceptScore W2950536468C119599485 @default.
- W2950536468 hasConceptScore W2950536468C120665830 @default.
- W2950536468 hasConceptScore W2950536468C121332964 @default.
- W2950536468 hasConceptScore W2950536468C127413603 @default.
- W2950536468 hasConceptScore W2950536468C153385146 @default.
- W2950536468 hasConceptScore W2950536468C192562407 @default.
- W2950536468 hasConceptScore W2950536468C196431656 @default.
- W2950536468 hasConceptScore W2950536468C27134321 @default.
- W2950536468 hasConceptScore W2950536468C2778415886 @default.
- W2950536468 hasConceptScore W2950536468C2982854487 @default.
- W2950536468 hasConceptScore W2950536468C541104983 @default.
- W2950536468 hasConceptScore W2950536468C80559505 @default.
- W2950536468 hasConceptScore W2950536468C9466671 @default.
- W2950536468 hasConceptScore W2950536468C97355855 @default.
- W2950536468 hasConceptScore W2950536468C97546620 @default.
- W2950536468 hasLocation W29505364681 @default.
- W2950536468 hasOpenAccess W2950536468 @default.
- W2950536468 hasPrimaryLocation W29505364681 @default.
- W2950536468 hasRelatedWork W2006913515 @default.
- W2950536468 hasRelatedWork W2011930304 @default.
- W2950536468 hasRelatedWork W2043276309 @default.
- W2950536468 hasRelatedWork W2576671896 @default.
- W2950536468 hasRelatedWork W2607219470 @default.
- W2950536468 hasRelatedWork W2888292555 @default.
- W2950536468 hasRelatedWork W2950536468 @default.
- W2950536468 hasRelatedWork W3024447697 @default.
- W2950536468 hasRelatedWork W3107233297 @default.
- W2950536468 hasRelatedWork W2555207611 @default.
- W2950536468 hasVolume "159" @default.
- W2950536468 isParatext "false" @default.