Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950556475> ?p ?o ?g. }
- W2950556475 endingPage "13554" @default.
- W2950556475 startingPage "13544" @default.
- W2950556475 abstract "Analysis of the dynamic and steady-state properties of biochemical networks hinges on information about the parameters of enzyme kinetics. The lack of experimental data characterizing enzyme activities and kinetics along with the associated uncertainties impedes the development of kinetic models, and researchers commonly use Monte Carlo sampling to explore the parameter space. However, the sampling of parameter spaces is a computationally expensive task for larger biochemical networks. To address this issue, we exploit the fact that reaction rates of biochemical reactions and network responses can be expressed as a function of displacements from the thermodynamic equilibrium of elementary reaction steps and concentrations of free enzymes and their intermediary complexes. For a set of kinetic mechanisms ubiquitously found in biochemistry, we express kinetic responses of enzymes to changes in network metabolite concentrations through these quantities both analytically and schematically. The tailor-made sampling of these quantities allows for characterizing efficiently the missing kinetic parameters and accelerating the efforts toward building genome-scale kinetic metabolic models, and further, it advances efforts in the Bayesian inference context. The proposed schematic method is simple and lends itself to a computer implementation that can be computationally more efficient than computer implementations of similar schematic methods." @default.
- W2950556475 created "2019-06-27" @default.
- W2950556475 creator A5037008443 @default.
- W2950556475 creator A5056011141 @default.
- W2950556475 creator A5071628447 @default.
- W2950556475 creator A5089102597 @default.
- W2950556475 date "2019-05-10" @default.
- W2950556475 modified "2023-10-10" @default.
- W2950556475 title "Control Theory Concepts for Modeling Uncertainty in Enzyme Kinetics of Biochemical Networks" @default.
- W2950556475 cites W109711062 @default.
- W2950556475 cites W1484198052 @default.
- W2950556475 cites W1501993347 @default.
- W2950556475 cites W1516587313 @default.
- W2950556475 cites W1681195331 @default.
- W2950556475 cites W1758405515 @default.
- W2950556475 cites W1793259860 @default.
- W2950556475 cites W1817368947 @default.
- W2950556475 cites W1872227732 @default.
- W2950556475 cites W1922871238 @default.
- W2950556475 cites W1944909517 @default.
- W2950556475 cites W1964202435 @default.
- W2950556475 cites W1966051514 @default.
- W2950556475 cites W1970865512 @default.
- W2950556475 cites W1974017189 @default.
- W2950556475 cites W1978114877 @default.
- W2950556475 cites W1978486653 @default.
- W2950556475 cites W1981502496 @default.
- W2950556475 cites W1990812533 @default.
- W2950556475 cites W1994134392 @default.
- W2950556475 cites W1997147688 @default.
- W2950556475 cites W1997733142 @default.
- W2950556475 cites W1997972137 @default.
- W2950556475 cites W2000873083 @default.
- W2950556475 cites W2012600591 @default.
- W2950556475 cites W2014504263 @default.
- W2950556475 cites W2016701213 @default.
- W2950556475 cites W2022238394 @default.
- W2950556475 cites W2032616735 @default.
- W2950556475 cites W2034961255 @default.
- W2950556475 cites W2036662471 @default.
- W2950556475 cites W2042067428 @default.
- W2950556475 cites W2044189879 @default.
- W2950556475 cites W2046359382 @default.
- W2950556475 cites W2053339983 @default.
- W2950556475 cites W2058949612 @default.
- W2950556475 cites W2061364094 @default.
- W2950556475 cites W2070600291 @default.
- W2950556475 cites W2077019109 @default.
- W2950556475 cites W2077511119 @default.
- W2950556475 cites W2078355959 @default.
- W2950556475 cites W2089465795 @default.
- W2950556475 cites W2091087653 @default.
- W2950556475 cites W2093838297 @default.
- W2950556475 cites W2102633175 @default.
- W2950556475 cites W2104266345 @default.
- W2950556475 cites W2105587783 @default.
- W2950556475 cites W2110699703 @default.
- W2950556475 cites W2111652881 @default.
- W2950556475 cites W2113282000 @default.
- W2950556475 cites W2115189047 @default.
- W2950556475 cites W2120095985 @default.
- W2950556475 cites W2154126596 @default.
- W2950556475 cites W2161227644 @default.
- W2950556475 cites W2162414127 @default.
- W2950556475 cites W2163480486 @default.
- W2950556475 cites W2164741971 @default.
- W2950556475 cites W2164898811 @default.
- W2950556475 cites W2263951705 @default.
- W2950556475 cites W2266907177 @default.
- W2950556475 cites W2297316616 @default.
- W2950556475 cites W2318277125 @default.
- W2950556475 cites W2470338435 @default.
- W2950556475 cites W2561960911 @default.
- W2950556475 cites W2623883779 @default.
- W2950556475 cites W2750663427 @default.
- W2950556475 cites W2892585814 @default.
- W2950556475 cites W2942493415 @default.
- W2950556475 cites W2951480779 @default.
- W2950556475 cites W55865925 @default.
- W2950556475 doi "https://doi.org/10.1021/acs.iecr.9b00818" @default.
- W2950556475 hasPublicationYear "2019" @default.
- W2950556475 type Work @default.
- W2950556475 sameAs 2950556475 @default.
- W2950556475 citedByCount "14" @default.
- W2950556475 countsByYear W29505564752019 @default.
- W2950556475 countsByYear W29505564752020 @default.
- W2950556475 countsByYear W29505564752021 @default.
- W2950556475 countsByYear W29505564752022 @default.
- W2950556475 countsByYear W29505564752023 @default.
- W2950556475 crossrefType "journal-article" @default.
- W2950556475 hasAuthorship W2950556475A5037008443 @default.
- W2950556475 hasAuthorship W2950556475A5056011141 @default.
- W2950556475 hasAuthorship W2950556475A5071628447 @default.
- W2950556475 hasAuthorship W2950556475A5089102597 @default.
- W2950556475 hasBestOaLocation W29505564751 @default.
- W2950556475 hasConcept C101810790 @default.
- W2950556475 hasConcept C105795698 @default.
- W2950556475 hasConcept C106131492 @default.