Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950556988> ?p ?o ?g. }
- W2950556988 abstract "Accurate and automatic organ segmentation from 3D radiological scans is an important yet challenging problem for medical image analysis. Specifically, the pancreas demonstrates very high inter-patient anatomical variability in both its shape and volume. In this paper, we present an automated system using 3D computed tomography (CT) volumes via a two-stage cascaded approach: pancreas localization and segmentation. For the first step, we localize the pancreas from the entire 3D CT scan, providing a reliable bounding box for the more refined segmentation step. We introduce a fully deep-learning approach, based on an efficient application of holistically-nested convolutional networks (HNNs) on the three orthogonal axial, sagittal, and coronal views. The resulting HNN per-pixel probability maps are then fused using pooling to reliably produce a 3D bounding box of the pancreas that maximizes the recall. We show that our introduced localizer compares favorably to both a conventional non-deep-learning method and a recent hybrid approach based on spatial aggregation of superpixels using random forest classification. The second, segmentation, phase operates within the computed bounding box and integrates semantic mid-level cues of deeply-learned organ interior and boundary maps, obtained by two additional and separate realizations of HNNs. By integrating these two mid-level cues, our method is capable of generating boundary-preserving pixel-wise class label maps that result in the final pancreas segmentation. Quantitative evaluation is performed on a publicly available dataset of 82 patient CT scans using 4-fold cross-validation (CV). We achieve a Dice similarity coefficient (DSC) of 81.27+/-6.27% in validation, which significantly outperforms previous state-of-the art methods that report DSCs of 71.80+/-10.70% and 78.01+/-8.20%, respectively, using the same dataset." @default.
- W2950556988 created "2019-06-27" @default.
- W2950556988 creator A5004476594 @default.
- W2950556988 creator A5016047550 @default.
- W2950556988 creator A5031054194 @default.
- W2950556988 creator A5042051713 @default.
- W2950556988 creator A5043710204 @default.
- W2950556988 creator A5045227579 @default.
- W2950556988 creator A5058215578 @default.
- W2950556988 date "2017-01-31" @default.
- W2950556988 modified "2023-09-27" @default.
- W2950556988 title "Spatial Aggregation of Holistically-Nested Convolutional Neural Networks for Automated Pancreas Localization and Segmentation" @default.
- W2950556988 cites W1544547617 @default.
- W2950556988 cites W1871050032 @default.
- W2950556988 cites W1901129140 @default.
- W2950556988 cites W1901606657 @default.
- W2950556988 cites W1903029394 @default.
- W2950556988 cites W1999478155 @default.
- W2950556988 cites W2000585255 @default.
- W2950556988 cites W2022508996 @default.
- W2950556988 cites W2059911466 @default.
- W2950556988 cites W2065698093 @default.
- W2950556988 cites W2101689475 @default.
- W2950556988 cites W2126393454 @default.
- W2950556988 cites W2136145485 @default.
- W2950556988 cites W2158362736 @default.
- W2950556988 cites W2163435437 @default.
- W2950556988 cites W2168804568 @default.
- W2950556988 cites W2168894214 @default.
- W2950556988 cites W2171963641 @default.
- W2950556988 cites W2183182206 @default.
- W2950556988 cites W2253429366 @default.
- W2950556988 cites W2308045930 @default.
- W2950556988 cites W2346062110 @default.
- W2950556988 cites W2433259561 @default.
- W2950556988 cites W2469107318 @default.
- W2950556988 cites W2518214538 @default.
- W2950556988 cites W2950891598 @default.
- W2950556988 cites W2951123255 @default.
- W2950556988 cites W2952036906 @default.
- W2950556988 cites W2952186347 @default.
- W2950556988 cites W2952789225 @default.
- W2950556988 cites W2962835968 @default.
- W2950556988 cites W2963948108 @default.
- W2950556988 cites W2964288706 @default.
- W2950556988 cites W317170363 @default.
- W2950556988 cites W56444682 @default.
- W2950556988 cites W8258973 @default.
- W2950556988 cites W855272188 @default.
- W2950556988 cites W954267072 @default.
- W2950556988 hasPublicationYear "2017" @default.
- W2950556988 type Work @default.
- W2950556988 sameAs 2950556988 @default.
- W2950556988 citedByCount "8" @default.
- W2950556988 countsByYear W29505569882017 @default.
- W2950556988 countsByYear W29505569882018 @default.
- W2950556988 crossrefType "posted-content" @default.
- W2950556988 hasAuthorship W2950556988A5004476594 @default.
- W2950556988 hasAuthorship W2950556988A5016047550 @default.
- W2950556988 hasAuthorship W2950556988A5031054194 @default.
- W2950556988 hasAuthorship W2950556988A5042051713 @default.
- W2950556988 hasAuthorship W2950556988A5043710204 @default.
- W2950556988 hasAuthorship W2950556988A5045227579 @default.
- W2950556988 hasAuthorship W2950556988A5058215578 @default.
- W2950556988 hasConcept C108583219 @default.
- W2950556988 hasConcept C115961682 @default.
- W2950556988 hasConcept C124504099 @default.
- W2950556988 hasConcept C126838900 @default.
- W2950556988 hasConcept C134306372 @default.
- W2950556988 hasConcept C13483470 @default.
- W2950556988 hasConcept C147037132 @default.
- W2950556988 hasConcept C152565575 @default.
- W2950556988 hasConcept C153180895 @default.
- W2950556988 hasConcept C154945302 @default.
- W2950556988 hasConcept C160633673 @default.
- W2950556988 hasConcept C178910020 @default.
- W2950556988 hasConcept C31972630 @default.
- W2950556988 hasConcept C33923547 @default.
- W2950556988 hasConcept C41008148 @default.
- W2950556988 hasConcept C62354387 @default.
- W2950556988 hasConcept C63584917 @default.
- W2950556988 hasConcept C71924100 @default.
- W2950556988 hasConcept C81363708 @default.
- W2950556988 hasConcept C89600930 @default.
- W2950556988 hasConceptScore W2950556988C108583219 @default.
- W2950556988 hasConceptScore W2950556988C115961682 @default.
- W2950556988 hasConceptScore W2950556988C124504099 @default.
- W2950556988 hasConceptScore W2950556988C126838900 @default.
- W2950556988 hasConceptScore W2950556988C134306372 @default.
- W2950556988 hasConceptScore W2950556988C13483470 @default.
- W2950556988 hasConceptScore W2950556988C147037132 @default.
- W2950556988 hasConceptScore W2950556988C152565575 @default.
- W2950556988 hasConceptScore W2950556988C153180895 @default.
- W2950556988 hasConceptScore W2950556988C154945302 @default.
- W2950556988 hasConceptScore W2950556988C160633673 @default.
- W2950556988 hasConceptScore W2950556988C178910020 @default.
- W2950556988 hasConceptScore W2950556988C31972630 @default.
- W2950556988 hasConceptScore W2950556988C33923547 @default.
- W2950556988 hasConceptScore W2950556988C41008148 @default.
- W2950556988 hasConceptScore W2950556988C62354387 @default.