Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950557212> ?p ?o ?g. }
- W2950557212 endingPage "41" @default.
- W2950557212 startingPage "30" @default.
- W2950557212 abstract "A gene regulatory network (GRN) represents a set of genes along with their regulatory interactions. Cellular behavior is driven by genetic level interactions. Dynamics of such systems show nonlinear saturation kinetics which can be best modeled by Michaelis-Menten (MM) and Hill equations. Although MM equation is being widely used for modeling biochemical processes, it has been applied rarely for reverse engineering GRNs. In this paper, we develop a complete framework for a novel model for GRN inference using MM kinetics. A set of coupled equations is first proposed for modeling GRNs. In the coupled model, Michaelis-Menten constant associated with regulation by a gene is made invariant irrespective of the gene being regulated. The parameter estimation of the proposed model is carried out using an evolutionary optimization method, namely, trigonometric differential evolution (TDE). Subsequently, the model is further improved and the regulations of different genes by a given gene are made distinct by allowing varying values of Michaelis-Menten constants for each regulation. Apart from making the model more relevant biologically, the improvement results in a decoupled GRN model with fast estimation of model parameters. Further, to enhance exploitation of the search, we propose a local search algorithm based on hill climbing heuristics. A novel mutation operation is also proposed to avoid population stagnation and premature convergence. Real life benchmark data sets generated in vivo are used for validating the proposed model. Further, we also analyze realistic in silico datasets generated using GeneNetweaver. The comparison of the performance of proposed model with other existing methods shows the potential of the proposed model." @default.
- W2950557212 created "2019-06-27" @default.
- W2950557212 creator A5030839425 @default.
- W2950557212 creator A5070425791 @default.
- W2950557212 creator A5082082969 @default.
- W2950557212 date "2019-08-01" @default.
- W2950557212 modified "2023-09-25" @default.
- W2950557212 title "Reverse engineering genetic networks using nonlinear saturation kinetics" @default.
- W2950557212 cites W1422717320 @default.
- W2950557212 cites W1583942422 @default.
- W2950557212 cites W1595159159 @default.
- W2950557212 cites W1923378012 @default.
- W2950557212 cites W1946177469 @default.
- W2950557212 cites W1971224531 @default.
- W2950557212 cites W1977516923 @default.
- W2950557212 cites W1989921625 @default.
- W2950557212 cites W1996264210 @default.
- W2950557212 cites W2005942782 @default.
- W2950557212 cites W2022891974 @default.
- W2950557212 cites W2025825535 @default.
- W2950557212 cites W2026188254 @default.
- W2950557212 cites W2027175324 @default.
- W2950557212 cites W2027668527 @default.
- W2950557212 cites W2028544954 @default.
- W2950557212 cites W2043313202 @default.
- W2950557212 cites W2048951385 @default.
- W2950557212 cites W2048956475 @default.
- W2950557212 cites W2061749710 @default.
- W2950557212 cites W2077255563 @default.
- W2950557212 cites W2082175819 @default.
- W2950557212 cites W2090806625 @default.
- W2950557212 cites W2092128861 @default.
- W2950557212 cites W2095802318 @default.
- W2950557212 cites W2103673431 @default.
- W2950557212 cites W2106927126 @default.
- W2950557212 cites W2108421561 @default.
- W2950557212 cites W2126010462 @default.
- W2950557212 cites W2126345910 @default.
- W2950557212 cites W2130280641 @default.
- W2950557212 cites W2132204276 @default.
- W2950557212 cites W2132720619 @default.
- W2950557212 cites W2134423940 @default.
- W2950557212 cites W2136970762 @default.
- W2950557212 cites W2138148774 @default.
- W2950557212 cites W2139997707 @default.
- W2950557212 cites W2146756876 @default.
- W2950557212 cites W2150750144 @default.
- W2950557212 cites W2159495578 @default.
- W2950557212 cites W2161511352 @default.
- W2950557212 cites W2166290356 @default.
- W2950557212 cites W2181619938 @default.
- W2950557212 cites W2468772838 @default.
- W2950557212 cites W2570295517 @default.
- W2950557212 cites W2611370172 @default.
- W2950557212 cites W2614590724 @default.
- W2950557212 cites W2616450260 @default.
- W2950557212 cites W2744465043 @default.
- W2950557212 cites W2760441177 @default.
- W2950557212 cites W2770463049 @default.
- W2950557212 cites W2791600132 @default.
- W2950557212 cites W2803928488 @default.
- W2950557212 cites W2811224217 @default.
- W2950557212 cites W2895842572 @default.
- W2950557212 cites W2950586838 @default.
- W2950557212 cites W4237291031 @default.
- W2950557212 doi "https://doi.org/10.1016/j.biosystems.2019.103977" @default.
- W2950557212 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31185246" @default.
- W2950557212 hasPublicationYear "2019" @default.
- W2950557212 type Work @default.
- W2950557212 sameAs 2950557212 @default.
- W2950557212 citedByCount "4" @default.
- W2950557212 countsByYear W29505572122021 @default.
- W2950557212 countsByYear W29505572122022 @default.
- W2950557212 countsByYear W29505572122023 @default.
- W2950557212 crossrefType "journal-article" @default.
- W2950557212 hasAuthorship W2950557212A5030839425 @default.
- W2950557212 hasAuthorship W2950557212A5070425791 @default.
- W2950557212 hasAuthorship W2950557212A5082082969 @default.
- W2950557212 hasBestOaLocation W29505572122 @default.
- W2950557212 hasConcept C104317684 @default.
- W2950557212 hasConcept C11413529 @default.
- W2950557212 hasConcept C121332964 @default.
- W2950557212 hasConcept C126255220 @default.
- W2950557212 hasConcept C13280743 @default.
- W2950557212 hasConcept C141934464 @default.
- W2950557212 hasConcept C144024400 @default.
- W2950557212 hasConcept C149923435 @default.
- W2950557212 hasConcept C150194340 @default.
- W2950557212 hasConcept C158622935 @default.
- W2950557212 hasConcept C167928553 @default.
- W2950557212 hasConcept C185798385 @default.
- W2950557212 hasConcept C186060115 @default.
- W2950557212 hasConcept C205649164 @default.
- W2950557212 hasConcept C2908647359 @default.
- W2950557212 hasConcept C33923547 @default.
- W2950557212 hasConcept C41008148 @default.
- W2950557212 hasConcept C54355233 @default.
- W2950557212 hasConcept C62520636 @default.