Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950573819> ?p ?o ?g. }
- W2950573819 abstract "In 1975 Szemer'edi proved that a set of integers of positive upper density contains arbitrarily long arithmetic progressions. Bergelson and Leibman showed in 1996 that the common difference of the arithmetic progression can be a square, a cube, or more generally of the form $p(n)$ where $p(n)$ is any integer polynomial with zero constant term. We produce a variety of new results of this type related to sequences that are not polynomial. We show that the common difference of the progression in Szemer'edi's theorem can be of the form $[n^delta]$ where $delta$ is any positive real number and $[x]$ denotes the integer part of $x$. More generally, the common difference can be of the form $[a(n)]$ where $a(x)$ is any function that is a member of a Hardy field and satisfies $a(x)/x^kto infty$ and $a(x)/x^{k+1}to 0$ for some non-negative integer $k$. The proof combines a new structural result for Hardy sequences, techniques from ergodic theory, and some recent equidistribution results of sequences on nilmanifolds." @default.
- W2950573819 created "2019-06-27" @default.
- W2950573819 creator A5032701417 @default.
- W2950573819 creator A5042492763 @default.
- W2950573819 date "2008-02-20" @default.
- W2950573819 modified "2023-09-27" @default.
- W2950573819 title "A Hardy field extension of Szemeredi's Theorem" @default.
- W2950573819 cites W1490170438 @default.
- W2950573819 cites W1549382427 @default.
- W2950573819 cites W1607458528 @default.
- W2950573819 cites W1970366772 @default.
- W2950573819 cites W1973175673 @default.
- W2950573819 cites W1985404726 @default.
- W2950573819 cites W2007202662 @default.
- W2950573819 cites W2009185855 @default.
- W2950573819 cites W2009196521 @default.
- W2950573819 cites W2017060778 @default.
- W2950573819 cites W2023478117 @default.
- W2950573819 cites W2060449236 @default.
- W2950573819 cites W2065281466 @default.
- W2950573819 cites W2077055049 @default.
- W2950573819 cites W2083567821 @default.
- W2950573819 cites W2084705636 @default.
- W2950573819 cites W2091797929 @default.
- W2950573819 cites W2097673562 @default.
- W2950573819 cites W2109721371 @default.
- W2950573819 cites W2141304880 @default.
- W2950573819 cites W2149558765 @default.
- W2950573819 cites W2159405134 @default.
- W2950573819 cites W237376979 @default.
- W2950573819 cites W2950682123 @default.
- W2950573819 cites W3102258829 @default.
- W2950573819 cites W3109381375 @default.
- W2950573819 cites W3152478022 @default.
- W2950573819 hasPublicationYear "2008" @default.
- W2950573819 type Work @default.
- W2950573819 sameAs 2950573819 @default.
- W2950573819 citedByCount "1" @default.
- W2950573819 crossrefType "posted-content" @default.
- W2950573819 hasAuthorship W2950573819A5032701417 @default.
- W2950573819 hasAuthorship W2950573819A5042492763 @default.
- W2950573819 hasConcept C114614502 @default.
- W2950573819 hasConcept C118615104 @default.
- W2950573819 hasConcept C122044880 @default.
- W2950573819 hasConcept C130498168 @default.
- W2950573819 hasConcept C134306372 @default.
- W2950573819 hasConcept C135692309 @default.
- W2950573819 hasConcept C14036430 @default.
- W2950573819 hasConcept C18903297 @default.
- W2950573819 hasConcept C199360897 @default.
- W2950573819 hasConcept C202444582 @default.
- W2950573819 hasConcept C2524010 @default.
- W2950573819 hasConcept C2777299769 @default.
- W2950573819 hasConcept C2778029271 @default.
- W2950573819 hasConcept C33923547 @default.
- W2950573819 hasConcept C41008148 @default.
- W2950573819 hasConcept C77926391 @default.
- W2950573819 hasConcept C78458016 @default.
- W2950573819 hasConcept C86803240 @default.
- W2950573819 hasConcept C90119067 @default.
- W2950573819 hasConcept C9652623 @default.
- W2950573819 hasConcept C97137487 @default.
- W2950573819 hasConceptScore W2950573819C114614502 @default.
- W2950573819 hasConceptScore W2950573819C118615104 @default.
- W2950573819 hasConceptScore W2950573819C122044880 @default.
- W2950573819 hasConceptScore W2950573819C130498168 @default.
- W2950573819 hasConceptScore W2950573819C134306372 @default.
- W2950573819 hasConceptScore W2950573819C135692309 @default.
- W2950573819 hasConceptScore W2950573819C14036430 @default.
- W2950573819 hasConceptScore W2950573819C18903297 @default.
- W2950573819 hasConceptScore W2950573819C199360897 @default.
- W2950573819 hasConceptScore W2950573819C202444582 @default.
- W2950573819 hasConceptScore W2950573819C2524010 @default.
- W2950573819 hasConceptScore W2950573819C2777299769 @default.
- W2950573819 hasConceptScore W2950573819C2778029271 @default.
- W2950573819 hasConceptScore W2950573819C33923547 @default.
- W2950573819 hasConceptScore W2950573819C41008148 @default.
- W2950573819 hasConceptScore W2950573819C77926391 @default.
- W2950573819 hasConceptScore W2950573819C78458016 @default.
- W2950573819 hasConceptScore W2950573819C86803240 @default.
- W2950573819 hasConceptScore W2950573819C90119067 @default.
- W2950573819 hasConceptScore W2950573819C9652623 @default.
- W2950573819 hasConceptScore W2950573819C97137487 @default.
- W2950573819 hasLocation W29505738191 @default.
- W2950573819 hasOpenAccess W2950573819 @default.
- W2950573819 hasPrimaryLocation W29505738191 @default.
- W2950573819 hasRelatedWork W1634296214 @default.
- W2950573819 hasRelatedWork W1965549553 @default.
- W2950573819 hasRelatedWork W2065678739 @default.
- W2950573819 hasRelatedWork W2093506712 @default.
- W2950573819 hasRelatedWork W2217597875 @default.
- W2950573819 hasRelatedWork W2405068759 @default.
- W2950573819 hasRelatedWork W2752862661 @default.
- W2950573819 hasRelatedWork W2768582067 @default.
- W2950573819 hasRelatedWork W2768764062 @default.
- W2950573819 hasRelatedWork W2788395808 @default.
- W2950573819 hasRelatedWork W2883920223 @default.
- W2950573819 hasRelatedWork W2901230885 @default.
- W2950573819 hasRelatedWork W2950926213 @default.
- W2950573819 hasRelatedWork W2951619881 @default.